بررسی اثرات کاربری اراضی بر فرسایش خاک با الگوریتم WLC (مطالعه موردی: حوضه آبخیز آقلاجانچای)

سید اصغر سراسکانورودی، مهندس فناوری‌محاسباتی، دانشگاه محقق اردبیلی، اردبیل، ایران

معین کیوهی، مهندس فناوری‌محاسباتی، دانشگاه محقق اردبیلی، اردبیل، ایران

علي اصغر اردشیری، مهندس فناوری‌محاسباتی، دانشگاه محقق اردبیلی، اردبیل، ایران

تاریخچه مقاله (تاریخ دریافت: 1398/3/20، تاریخ پذیرش: 1398/8/14)

چکیده
امروز تبدیل جنگل‌ها و مرتع به اراضی کشاورزی و مناطق انسانساخت، نگرانی‌های زیادی را در زمینه تخریب خاک، محیط‌زیست و نگهداری اقیانوس‌های مصرفی دنبال دارد. این روند، نتیجه شهری انتقال مطالعات و تغییرات فرسایش خاک در اثر تغییراتی که با آن به بررسی روند تغییرات کاربری اراضی در حوضه آبخیز آقلاجانچای استان اردبیل در تأثیر آن بر فرسایش خاک پرداخته شد. بدین منظور، فرمول کاربری اراضی سال‌های گذشته مطالعه با استفاده از روش مدل‌گذاری و الگوریتم توده بهبود گیرنده، از روی تصور واکنش‌های حساس استخراج شد. بهبود دقیقه بهبودی فرسایش خاک از طریق الگوریتم WLC استفاده از تقاضای کاربری اراضی و عوامل سال‌های گذشته陈列ی، شبیه‌سازی، نظارت آزمایشی، فاصله از آب‌های آرا، فاصله از جاده، باش و خاک با استفاده از روش و ازده کریمک و روش تکیه خلی و روش تغییرات ضروری است. براساس نتیجه بهبودی فرسایش منفی‌برداری‌های بیشتر بین سال‌های 1990، 2000، 2010 و 2018، به طور عادی مناطق به طبقه بندی بیشتر و مناطق بیشتر در کاربری‌های دیپوزیت و مناطق کشاورزی دپویت قرار دارند. با توجه به بهبودی فرسایش خاک در مانند، ساخته طبقه بندی بیشتر به ترتیب 11/20، 12/24 درصد و طبقه بیشتر به ترتیب 26/59، 29/29 درصد است که افزایش فرسایش خاک را در گذشته زمان نقش می‌کند. در نتیجه تنها داده‌ها روند تغییرات و تبدیل آن به مناطق کشاورزی و انسانساخت، بیشترین میزان تأثیر را بر فرسایش خاک داشته‌اند.

واژگان کلیدی: استانداردسازی، تصادف لندست، طبقه‌بندی فاکتوریال فرسایش خاک، کاربری اراضی

1- مقدمه
کاربری اراضی، نگرانی‌های محیط‌زیست و توصیف نحوه بهره‌وری دارای انسان برای یک چند هدف بر روی زمین منکس می‌سازد و معمولاً بر اساس استفاده انسان از زمین با تأکید بر تغییرات کاربردی زمین در فعالیت‌های انسانی و اقتصادی تعیین می‌شود (Nazari et al, 1389). فعالیت‌های انسانی و اقتصادی موجود بر روی کاربری اراضی به تغییرات اساسی در آن منجر می‌شود؛ از جمله این تغییرات می‌توان به تأثیرات منفی در عملکرد

Sayyad.sasghari21@gmail.com
فرسایش خاک اشاره کرد که باعث تغییر در دسترسی به منابع آب شده است و به ایجاد کشت دیم و افزایش فرسایش خاک منجر خواهد شد. (DaSilva et al, 2016). تغییرات کاربری اراضی یکی از عوامل مهم در تغییر جریان هیدرولوژیک و فرسایش خاک است که می‌توان با اطلاع از روند تغییرات آن، در راستای هدف‌ها اكوسیستم به سمت تعداد قدم برداشته (Safarian et al, 2011). فرسایش خاک یکی از مهم‌ترین عوامل تخریب و کاهش باروری خاک است که امروزه در حال افزایش می‌باشد و به هدف رفتار خاک گرخور و کاهش آن، از روند طبیعی خود خارج شده و تبادل چربی‌نابیلی از جمله پشت خاک کاهش سطح زمین‌های کشاورزی، کاهش عمر میانگین سده‌های مخزنی را پی داشته است (karam et al, 1389). بررسی اثرات کاربری اراضی بر فرسایش خاک...

جلد...

چگونگی تغییرات کاربری اراضی اثر اثرات دارد. (Wessels et al, 2004) بنا براین، می‌توان گفت اثرات داده‌های مناسبی که دارای میانگین محسوبی بودند خیلی نزدیک به استفاده از تکنیک‌های دورسنجی و میانگین اثرات محیطی استفاده شود که از محتوای آنها می‌توان با استفاده از تکنیک‌های GIS محاسبه نشانی از چگونگی تغییرات کاربری اراضی اثرات دارد. در میانگین GIS راهکارهای مناسب بسزاید (Shataee, 2007). بررسی‌های زیست محیطی، بسته به ارزیابی توان اکولوژیکی سرمزمی، امری ممکن نیست (Mahdavi et al, 2011). روش‌های ارزیابی چندمعیاره، این امکان را فراهم می‌سازد که می‌تواند گوناگونی طبیعی را همراه با هم لزوم در تعیین بهترین گزینه و مناسب‌ترین شرایط کار گرفته شود.

این روش، رابطه‌ای بین کاربردترین روش در مطالعات فرسایش خاک به شمار می‌رود (malczewski, 2004). در این روش، از روش ترتیب خلوت و زنی (wlc) بنا بر عوامل یکی از روش‌های تصمیم‌گیری چند معیاره استفاده شده است.

نتایج پژوهش آنها نشان داد سطح زمین‌های کشاورزی و مراتع، کاهش یافته و میزان فرسایش در این مناطق 10 برابر افزایش داشته است. (Feizadzade و همکاران, 2017) تغییرات کاربری اراضی و نقش آن در فرسایش هیدرولوژیکی علت روی روش کردن و دریافت بیشتر اراضی جدیدی بر پرداخته که بر اثر کم تراکم و زارعیت دیم، مهم‌ترین عامل در فرسایش منطقه است. (Feizadzade و همکاران, 2017) به بررسی تغییرات کاربری اراضی با استفاده از روش‌های پیکسل پایه و مشه‌گرایی و تحلیل تأثیرات تغییر کاربری‌ها بر فرسایش خاک (مطالعه موردی: شهرستان مراغه) پرداخته است.

شیء‌گرایی و تحلیل تأثیرات تغییر کاربری‌ها بر فرسایش خاک (مطالعه موردی: شهرستان مراغه) پرداخته است.

1 Weighted Linear Combination
کاربری اراضی چه تأثیری بر فرسایش خاک حفظه آبخیز آق‌الافات‌چای شهرستان نیجر در استان اردبیل دارد؟ و در بازده زمانی (1990-2018) چه مقدار تغییرات در این حفظه در زمینه‌ی فرسایش خاک صورت گرفته‌است؟ نوآوری این تحقیق نسبت به تحقیقات مشابه استفاده از طبقه‌بندی‌یازگرا با الگوریتم نزدیک‌ترین همسایگی‌یا باشد که در تحقیقات قبلی، عمداً از طبقه‌بندی پیکسل پایه برای تحقیق‌های کاربری اراضی استفاده شد. ذکر این امر لازم است که پردازش‌های شیء‌گرا در مقابل پردازش پیکسل‌پایه، دقت و کارایی پیش‌بینی بالاتری دارد که از‌سوا گروه و سیبی از پژوهشگران تأثیب‌شناسی بر فرسایش خاک در حفظه آق‌الافات‌چای است.

2- منطقه‌ی مورد مطالعه محدوده‌ی مورد مطالعه حفظه آبخیز آق‌الافات‌چای، در شهرستان نیجر در استان اردبیل وجود است که با وسعت 155 کیلومتر مربع، در مختصات جغرافیایی 38 درجه و 10 دقیقه تا 38 درجه و 11 دقیقه عرض شمالی و 42 درجه و 6 دقیقه طول شرقی قرار‌گرفته‌است و از زیر حفظه‌های بالاخوج‌چای اردبیل محسوب می‌شود. این حفظه، در شمال غرب ایران و در دامنه جنوب شرقی کوه سیلان قرار دارد. خاک‌های حفظه آق‌الافات‌چای شامل چهار نوع خاک برآون-کالولیا، کالولیا، لیتوسول و لیتوسول-کالولیا است. خاک‌های ریزه‌انداز (شامل لیتوسول در واحده منطقه) در سطح این حفظه، از درصد زیادی رسن، مارن و سیلت تشکیل شده‌است و سطح زایدی نیز دارد (Sobhani et al. 1376). از نظر زمین‌ساختی، منطقه‌ی مورد مطالعه در زون زمین‌ساختی البرز غربی-آذربایجان قرار دارد. شکل 1 موفقیت منطقه‌ی آق‌الافات‌چای استان اردبیل را نشان می‌ده.

شکل 1: موقعیت حفظه آب‌آلیص آق‌الافات‌چای شهرستان نیجر استان اردبیل (منبع: نوبن‌داغی، 1398)

3- مواد و روش
پژوهش مورد نظر از نوع تحقیقات کاربردی و روش آن تحلیل مبتنی بر تلفیق آنالیز داده‌ها و تکنیک‌های ساعش از دور و سیستم اطلاعات جغرافیایی است. یکی از روش‌های مورد استفاده به منظور بررسی اثر تغییر کاربری اراضی بر
بررسی اثرات کاربری اراضی بر فرسایش خاک

فرسایش خاک، روش ترکیب خطی وزنی (WLC) است. این روش به عنوان یکی از روش‌های تصمیم گیری چند معیاره مطرح شده است. یک روش ترکیب خطی وزنی (WLC) مراحل دارد که عبارت است از: 1- استاندارد سازی نقشه‌های معیار؛ 2- تعیین وزنه‌های معیار؛ 3- ایجاد نظریه استاندارد شده وزنی (ضرب لاها معیاره استاندارد شده وزنی و برآورد نمره

یا امتیاز کل (گرینر) که بالاترین امتیاز (رتبه) را دارد به عنوان بهترین گزینه شناخته می‌شود (malcheiki, 2006). معیارهای مورد نظر در این روش نقشه‌های توبوگرافی، کاربری اراضی، راه‌های ارتباطی، فاصله از آب‌های خاک‌شناسی، مدل ارتفاعی رقśni و شبکه منطقه‌ای باشد. این امر به‌صورت برخی از ترتیبات هر دو روشی خود را شرح داده‌اند.

شکل 2: روند کلی بررسی اثرات کاربری اراضی بر فرسایش خاک حوزه آبخیز آقآقا اصفهان به‌دلیل دریافت‌اندیش

(منبع: نوبیسگان، 1398)

تنهیت نقشه کاربری اراضی

کاربری اراضی از عوامل تأثیرگذار بر فرسایش میزان فرسایش خاک و کاهش درآمدهای حاصل از اراضی است و با تعیین کاربری اراضی مناسب، می‌توان به توسعه پایدار دست یافتن (Dadkhah and Najafinejad, 1997). در تحقیق حاضر نیز با هدف استخراج کاربری اراضی حوزه آبخیز آقآقا اصفهان، ابتدا تصاویر ماهواره‌ای لندس‌تیز از سنجش‌های 1/۱۰۰۰۰ (برای سال‌های ۱۹۹۰، ۱۹۹۸ و ۲۰۰۸) در ماه جولای از سایت زمین شناسی آمریکا انتخاب شد (جدول ۱). برای استخراج نقشه کاربری اراضی از ترکیب باندهای مرنی (آی، سبز و قرمز) و مادون قرمز نزدیک سوئیفک ماهواره‌ای

1 Weighted Linear Combination
2 Land use
3 Soil
4 Digital elavation model
5 Slop
6 Operational Land Imager
7 Thematic Mapper
پژوهش‌های فرسایش محیطی

لندست، برای طبقه‌بندی استفاده شد. ذکر این امر لازم است که برخلاف طبقه‌بندی پیکسل پایه، در طبقه‌بندی شیء‌گرا ترکیب چهار باند (2، 4، 6 و 7) ماهواره‌ای لندست ممکن می‌باشد. سپس به مدل‌های آماری سازی تصاویر، تصمیمات صورت گرفت. در Flas‌h هندسی و اتمسفری با استفاده از روش Ecognition به صورت گرفت. نهایت، طبقه‌بندی با روش شیء‌گرا و الگوریتم نزدیک ترین همسایگی توسط نرم‌افزار Envi 5.3 صورت گرفت. در Precipitation Concentration Index

8 Precipitation Concentration Index
9 Gray Level Co-Occurrence Matrix
10 Maximum likelihood

در این پژوهش، پارامترهای مؤثر بر استخراج کلاس‌ها در طبقه‌بندی شیء‌گرا شامل این موارد است: ۱- انتخاب

معیار مانند: انحراف معیار یکی از شاخص‌های پراکندگی است که نشان می‌دهد، داده‌ها به‌طور میانگین به چه میزان از مقدار متوسط فاصله دارند. در این شاخص از سه پارامتر شامل باند مادون‌قرمز و قرمز و سبز استفاده شد. ۲- شاخص GLCM سلول‌ها داخل سلول‌یک به کار گرفته می‌شود. ۵- در شاخص هندسی، از پارامترهای مؤثری مانند حجم‌ها، انتخاب

درجهٔ روش‌هایی ضخامت، مساحت و فشردگی استفاده شد. در این پژوهش برای بررسی صحت طبقه‌بندی از نرم‌افزار ArcGIS استفاده شد؛ به‌دنبال مدل‌های ابتدا براه‌ی کاربردی ۱۰ نمونه از سطح محدود دنبال‌شده. سپس با استفاده از روش پیکسل پایه و الگوریتم نزدیک ترین همسایگی توسط نرم‌افزار Envi 5.3 صورت گرفت. در مرحکه بود، طبقه‌بندی شیء‌گرا و پیکسل با مقایسه تک‌نقطه‌ای‌ها با بکن‌دگری انجام و در نهایت، ضریب یک‌پاره و صحت کلی تعیین گردید. برای خروجی تمامی نتایج طبقه‌بندی شده به روش شیء‌گرا از Nرم‌افزار ArcGIS استفاده شد.
جدول 1: خصوصیات تصویرسنجی (TM-OLI) از ماهواره لندست (منبع: مادیا)

<table>
<thead>
<tr>
<th>ردیف/گذر</th>
<th>زاویه ازیمتو خورشید</th>
<th>زاویه ارتقاء خورشید</th>
<th>تاریخ اخذ تصویر</th>
<th>تصویر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/26/44</td>
<td>112/10</td>
<td>167/34</td>
<td>12/07/2000</td>
<td>TM</td>
</tr>
<tr>
<td>5/2/42</td>
<td>121/22</td>
<td>127/88</td>
<td>20/07/2018</td>
<td>OLI</td>
</tr>
</tbody>
</table>

شکل 3: نمودار تصویر فلتخمیبدیده حوضه آبخیز آقآلانچای شهرستان نیر در استان اردبیل (منبع: نوبه‌نگان، 1398)

تهیه نقشه‌های مدار

اطلاعات خاک‌شناسی، از اساسی ترین اطلاعات موردی‌ای فرسایش‌زاک است. مدل گزارش خاک برای بررسی فرسایش‌زاک، به خصوصیات مختلف فیزیکی یا شیمیایی خاک تاکنون ایستاده و درصد رطوبت در دسترس خاک و هوا ویژگی‌های استانداردی مختلف خاک در این پژوهش، شرکت کرده‌اند. (Bossa et al., 2012) تا به شکلی رو به آینده، ارتقاچی‌ها، به کار گیری نقشه‌های توپوگرافی و نقشه‌های مطالعاتی همه استفاده شده‌اند. در این تحقیق با استفاده از نقشه‌های توپوگرافی منطقه با مقياس 1:250000 و نقشه‌های ارتقاچی، نقشه‌های بحثی از حوضه آبخیز آقآلانچای تهیه شده‌اند. برای استخراج نقشه‌های ضمایری حوضه آبخیز آقآلانچای از مطالعات امامی و سرزمین و سرد راهبردی توسعه استان اردبیل (1395) بهره‌برداری و تغییرات ارتفاعی از این نقشه‌ها بر پایه عناصر استخراج شده، نقشه‌های مدار ایجاد شده و در این پژوهش، 1 نقشه‌های مدار ارتفاعی استفاده شده‌اند.

\[P=0.228 \text{ H} - 86.6 \]

1. www.ardabil.frw.org.ir
2. www.gsi.ir
پژوهش‌های فرسایش محیطی 9:2 (34)، تابستان 1398، 71-53

شکل ۲: نقشه‌های اطلاعات خاک‌شناسی، ه Marl، راه ارتباطی، آب‌ریزی، پردازش و اثرات آب‌بخشی و آب‌بستگی در استان اردبیل (منبع: نوبت‌دان، ۱۳۹۸)

روش ترکیب خطی وزنیی
در این پژوهش، از روش فازی برای استاندارد‌سازی استفاده شد. در مجموعه‌های فازی بیشترین ارزش علیه مقدار‌های بیشتری از مجموعه تعریف می‌گردند و کمترین ارزش علیه صفری به مبنای معیار است. در این مطالعه از روش وزن‌دهی کریتیکی استفاده شد.

روش وزن‌دهی کریتیکی
در روش وزن‌دهی کریتیکی، در این پژوهش از مساوی میزان داخلی و تضاد موجود بین عوامل جدا معیارها تجزیه و تحلیل می‌شود. در روش کریتیکی برای برآورد معیار ارزیابی، دانش‌های از تغییرات مقدار می‌گردند گرچه در میان یکی از مقدارهای معیار است. این پارامترهای درجه‌بندی برای معیارهای مورد استفاده دارای پارامترهای آماری از جمله انحراف معیار است. این پارامترهای درجه‌بندی یا در مقادیر معیار مربوط به نشان‌های می‌دهند. پس برای محاسبه‌ی انحراف معیار عوامل و معیارهای مورد بررسی، ماتریس متریکی به ابعاد $m \times m$ به وجود می‌آید که شامل ضرایب همبستگی بین پردار

1 Weighted Linear Combination
2 Critic
تشکیل شده است (Malchevsky, 2006). با توجه به پارامترهای بالا، تضاد موجود بین معیار آب معیار دیگر از رابطه ۲ محاسبه می‌شود.

\[c_{jk} = \sum_{z=1}^{m} (1 - r_{jk}) \]

رابطه ۲

در این رابطه، \(c_{jk} \) معرف مجموعه معیار آب انحراف معیار در مقادیر مربوط عامل آب موجود آب نشان می‌دهد. با توجه به رابطه‌ی ۱، معیار آب می‌تواند کی می‌شود. (Malchevsky, 2006).

\[c_{j} = \delta_{j} \sum_{k=1}^{m} (1 - r_{jk}) \]

رابطه ۳

در این رابطه، \(c_{j} \) معرف میانگین اطلاعات معیار آب انحراف معیار در مقادیر مربوط عامل آب موجود آب نشان می‌دهد. (Malchevsky, 2006).

\[w_{ij} = \frac{c_{j}}{\sum_{k=1}^{m}} \]

رابطه ۴

در این رابطه، \(w_{ij} \) معرف مجموعه معیار آب در ارتباط با صفت آب و ریک ون استاندارد شده است که در مجموع، وزن با یک می‌شود (1 = 1). وزن آب اهمیت نسبی هر صفت را نشان می‌دهند. با توجه به ارتباط در بالا، \(i = A_{i} \) اولویت دارترین گروهی انتخاب می‌شود (Malchevsky, 2006).

\[A_{i} = \sum_{j} w_{ij} x_{ij} \]

رابطه ۵

در این رابطه، \(A_{i} \) معرف مجموعه گروهی آم در ارتباط با صفت آم و ریک ون استاندارد شده است که در مجموع، وزن با یک می‌شود (1 = 1). وزن آب اهمیت نسبی هر صفت را نشان می‌دهند. با توجه به ارتباط در بالا

4. یافته‌ها (نتایج و بحث)

در این پژوهش، طبقه‌بندی تصاویر ماهواره‌ای به صورت شکل گرا مصور و گرفته و با استفاده از توانهای علمی به طبقه‌بندی تصاویر پرداخته شد. بدین ترتیب، نقشه‌های پویش را ارائه کرد. از روی تصاویر مربوط به سالهای ۲۰۰۸ و ۲۰۱۸ استخراج شد (شکل ۵). تعداد ۱۱ کلاس شامل نواحی Ecognition انسان ساخت، مربع ضیوف، مربع متراکم، مربع کم تراکم، پویش به دامنه و، فضای سیب، دیپزار، مناطق کوهستانی، مناطق کشاورزی، زمین‌های کاکه و باغات برای ناحیه‌های مورد مطالعه استخراج شد. سپس صحت طبقه‌بندی برای سال‌های ذکر
پژوهش‌های فرسایش محیطی
شده در نرم‌افزار 5.3 بررسی و تعمیق شد (جدول ۲). در نهایت به‌منظور گرفتن خروجی و ساخت نقشه، این طبقه‌بندی ها به نرم‌افزار ArcGIS 10.5 انتقال داده شد.

جدول ۲: بررسی صحت طبقه‌بندی کاربری اراضی حوکه آق‌آلفانچای شهرستان نیر در استان اردبیل

<table>
<thead>
<tr>
<th>ضریب کاپا</th>
<th>صحت کلی</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/43</td>
<td>95/0</td>
<td>1990</td>
</tr>
<tr>
<td>0/97</td>
<td>98/0</td>
<td>2000</td>
</tr>
<tr>
<td>0/91</td>
<td>93/0</td>
<td>2018</td>
</tr>
</tbody>
</table>

نتایج جدول ۲ نشان می‌دهد که در سال ۱۹۹۰، صحت کلی ۹۵ درصد و ضریب کاپا برابر با ۰/۴۳، و در سال ۲۰۰۰، صحت کلی ۹۸ درصد و ضریب کاپا ۰/۹۷ است. با توجه به صحت کلی نقشه‌ها و با استفاده و مقایسه با متایی نظر (Lillesand et al, ۲۰۰۹) – که ضریب صحت کلی بزرگ‌تر از ۸۵ درصد را قابل قبول عنوان کرده‌اند – نتایج حاصل از طبقه‌بندی کاربری‌ها چه از نظر تک‌تک کاربری‌ها چه از نظر مجموع صحت و آمار کاپا در زمینه‌ای اطلاعات تولید شده از صحت قابل قبولی برخوردار است. همچنین در جدول ۳ میزان سه‌ها هر یک از کاربری‌ها برای سال‌های (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) بررسی شد و نتایج قابل مشاهده می‌باشد.
جدول ۳: درصد ساحه کاربری حاصل از طبقه‌بندی سال‌های (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) حوزه آبی‌های آق‌الانه جهت‌سازی شهروستان نیر در استان اردبیل

(منبع: نویسندگان، ۱۳۹۸)

<table>
<thead>
<tr>
<th>سال</th>
<th>۲۰۱۸</th>
<th>۲۰۰۰</th>
<th>۱۹۹۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلاس کاربری اراضی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیپزاز</td>
<td>۳۳/۵۱</td>
<td>۳۱/۸۵</td>
<td>۴۷/۰۶</td>
</tr>
<tr>
<td>منطق کوهستانی</td>
<td>۳/۱۰</td>
<td>۵/۲۶</td>
<td>۴/۲۵</td>
</tr>
<tr>
<td>منطق انسان‌ساخت</td>
<td>۱/۸۸</td>
<td>۱/۶۲</td>
<td>۱/۹۴</td>
</tr>
<tr>
<td>منطق کشاورزی</td>
<td>۶/۸۸</td>
<td>۷/۵۰</td>
<td>۸/۶۶</td>
</tr>
<tr>
<td>مرغ</td>
<td>۹/۴۷</td>
<td>۲/۷۷</td>
<td>۶/۱۸</td>
</tr>
<tr>
<td>برف</td>
<td>۸/۴۸</td>
<td>۱۱/۶۲</td>
<td>۱۰/۵۲</td>
</tr>
<tr>
<td>مرغ کم تراکم</td>
<td>۱۱/۲۹</td>
<td>۱۱/۱۸</td>
<td>۱۲/۷۶</td>
</tr>
<tr>
<td>مرغ متراکم</td>
<td>۱/۳۱</td>
<td>۲/۳۴</td>
<td>۱/۲۷</td>
</tr>
<tr>
<td>پوشش گیاهی</td>
<td>۴/۸۳</td>
<td>۶/۶۴</td>
<td>۴/۲۱</td>
</tr>
<tr>
<td>زمین‌بایر</td>
<td>۱۶/۳۳</td>
<td>۱۸/۱۷</td>
<td>۱۶/۳۴</td>
</tr>
<tr>
<td>باغات</td>
<td>۹/۰۹</td>
<td>۹/۲۱</td>
<td>۸/۰۷</td>
</tr>
</tbody>
</table>

نتایج به دست آمده از جدول ۳ نشان می‌دهد که در سال‌های (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) تغییرات چشم‌گیری قابل مشاهده است. از عملکرد ترین این تغییرات می‌توان به مرتع و زمین‌بایر اشاره کرد که به‌طور متسق در اثر بهره‌برداری شدید، به‌دیگر کاربردها همچون مناطق مسکونی، مناطق کشاورزی و دیپزاز تبدیل شدند. افزایش مساحت کاربری انسان‌ساخت و دیپزاز و مناطق کشاورزی در سال ۲۰۰۰ و ۲۰۱۸ نسبت به سال ۱۹۹۰، نظام تخریب مرتع و کاهش زمین‌های بی‌پار است که همین امر تغییرات بسیار زیادی در سیستم‌های مورفولوژیک منطقه ایجاد خواهد کرد. این تغییرات عمداً با افزایش مساحت کردن و سایر فرآیندهای مورفولوژیک منجر خواهد شد. همان‌طور که نتایج Riyahi و همکاران (۱۳۷۹) نشان می‌دهد، در شرایط بارش‌های یكسان در بی‌بین رفت پوشش طبیعی منطقه و افزایش سطح نفوذنوسان‌هایی تغییرات دیپ اوج و حجم روان‌داد در منطقه افزایش شده، این امر می‌تواند به ایجاد تخریب بسیار گسترده در منطقه منجر شود. در این پژوهش در اندیشه گیری معیارهای بررسی اراضی خاک، دامنه‌ی منتوأزی از مقیاس ها وجود دارد؛ از این رو لازم است معاونی قبل از ترکیب با یکدیگر استاندارد شود. در این مطالعه، مرحله‌ی مربوط به ارزش‌گذاری و استاندارد‌سازی به صورت توأم با هم‌بازار ارزش عضویت در مجموعه‌ای در نظر گرفته شدند. در پژوهش حاضر، ارزش عضویت بین مقادیر ۰ تا ۱ قرار دارد. نقشه‌های استاندارد شده‌ی مربوط به معیارهای مطرح در مطالعه‌ی حاضر، در شکل ۶ نشان داده شدند.
پژوهش های فرسایش محیطی ۹ :۲ (۳۴)، تابستان ۱۳۹۸، ۷۱-۵۳

شکل ۶: نقشه‌های استان‌دارندیز فاصله‌های مطرح در حوضه آبخیز آق‌آلا افغان‌جای شهرستان تبریز در استان اردبیل

(in: نویسندگان، ۱۳۹۸)
بررسی اثرات کاربری اراضی بر فرسایش خاک

جدول 4: مجموع نتایج انحراف معیار، میزان اطلاعات و وزن نهایی میانگین‌های مطرح در پهنه‌های فرسایش خاک حوزه آبخیز آق‌آلاچای

<table>
<thead>
<tr>
<th>وزن نهایی</th>
<th>میزان اطلاعات</th>
<th>انحراف معیار</th>
<th>مجموع نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/20</td>
<td>225/24</td>
<td>8/42</td>
<td>6/22</td>
</tr>
<tr>
<td>0/17</td>
<td>327/35</td>
<td>5/39</td>
<td>3/29</td>
</tr>
<tr>
<td>0/16</td>
<td>392/33</td>
<td>6/63</td>
<td>5/33</td>
</tr>
<tr>
<td>0/15</td>
<td>50/210</td>
<td>5/50</td>
<td>3/23</td>
</tr>
<tr>
<td>0/14</td>
<td>488/24</td>
<td>8/57</td>
<td>2/20</td>
</tr>
<tr>
<td>0/13</td>
<td>33/32</td>
<td>6/60</td>
<td>5/25</td>
</tr>
<tr>
<td>0/12</td>
<td>59/24</td>
<td>5/55</td>
<td>2/25</td>
</tr>
<tr>
<td>0/11</td>
<td>301/20</td>
<td>5/50</td>
<td>3/23</td>
</tr>
<tr>
<td>0/10</td>
<td>275/18</td>
<td>5/49</td>
<td>3/23</td>
</tr>
<tr>
<td>0/9</td>
<td>428/24</td>
<td>8/60</td>
<td>2/20</td>
</tr>
</tbody>
</table>

فاصله از آبراه

شکل 4: نسبت کاربری، اوحزاف میزان اطلاعات و وزن نهایی میانگین‌های مطرح در پهنه‌های فرسایش خاک حوزه آبخیز آق‌آلاچای (برای مقایسه: 1389).
پژوهش‌های فرسایش محیطی ۹:۲ (۳۴) تابستان ۱۳۹۸ (۷۱-۵۳)

مورد مطالعه عوامل لیتوژنی با ضریب وزنی (۱/۱۶)، بازی با ضریب وزنی (۱۳/۱۶) و کاربری اراضی با ضریب وزنی (۰/۱۰) از مهم‌ترین عوامل ایجاد فرسایش خاک در حوزه آبخیز آق‌آلاجان‌چای می‌باشد.

![نمودار A](https://example.com/image.png)

شکل ۷۷: نقشه‌پیشیندی فرسایش خاک در سال‌های (۱۹۹۰، ۲۰۰۰)، (۲۰۱۸) حوزه آبخیز آق‌آلاجان‌چای شهرستان تیر در استان اردبیل

(منبع: نویسنده‌ها ۱۳۹۸)

جدول ۵: اطلاعات طبقات حجر فرسایش سال‌های (۱۹۹۰، ۲۰۰۰) و (۲۰۱۸) حوزه آبخیز آق‌آلاجان‌چای شهرستان تیر در استان اردبیل

<table>
<thead>
<tr>
<th>طبقه حجر</th>
<th>بیشتر (هکتار)</th>
<th>متوسط</th>
<th>کمتر (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیمار برخور</td>
<td>۱۷۵۸/۲۳</td>
<td>۴۰۱۸/۱۱</td>
<td>۱۵۸۳/۸۸</td>
</tr>
<tr>
<td>درصد</td>
<td>۱۳/۷۱</td>
<td>۲۳/۷۳</td>
<td>۲۵/۵۱</td>
</tr>
<tr>
<td>مساحت (هکتار)</td>
<td>۴۱۹/۸۸</td>
<td>۴۱۳/۰۷</td>
<td>۴۱۶/۸</td>
</tr>
<tr>
<td>درصد</td>
<td>۱۰/۳۳</td>
<td>۲۸/۲۷</td>
<td>۱۹/۰۸</td>
</tr>
<tr>
<td>مساحت (هکتار)</td>
<td>۴۸۸/۶۸</td>
<td>۳۴۷/۶۲</td>
<td>۱۵۹۸/۶۷</td>
</tr>
<tr>
<td>درصد</td>
<td>۱۹/۲۹</td>
<td>۲۵/۱۸</td>
<td>۲۵/۱۸</td>
</tr>
</tbody>
</table>

با توجه به نقشه‌های پیشینندی فرسایش در محدوده مطالعاتی می‌توان گفت در سال ۱۹۹۰ مساحت طبقه‌های بیمار برخور ۱۷۵۸/۲۳ هکتار بوده که این مقدار در این طبقه از حجر در سال‌های ۲۰۰۰ و ۲۰۱۸ به ترتیب ۸/۷۱ و ۱۹/۸۷ هکتار با هکتار افزایش یافته و همین طور مساحت طبقه کمتر برخور ۱۵۸۳/۸۸ در سال ۱۹۹۰ به ۱۹/۰۸ و ۱۵۹۸/۶۷ هکتار به ترتیب در سال‌های ۲۰۰۰ و ۲۰۱۸ افزایش یافته است. در نقشه‌های فرسایش سال‌های ۲۰۰۰ و ۲۰۱۸ بطور عمده

۵۵
مناطق با طبقهٔ بی‌نظر و بی‌خطر در کاربری‌های اراضی کشاورزی، باغات و مسکونی قرار دارد. بنابراین،
تغییرات کاربری‌های مختلف در منطقه به تغییر در روندهای مورفولوژیک انجام‌داده‌است؛ برای مثال، تغییرات در
کاربری‌های مرتع و تبدیل آن به باغات یا اراضی کشاورزی به تغییر در سیستم فرسایش منطقه متجر شده‌است. با توجه
به اینکه مرتع در مقابل فرسایش منطقه نشان حفاظتی تدریجی دارد، هرگونه تغییر در میزان پوشش گیاهی و افزایش
دختال‌های انسانی (ساخت و ساز و تغییر در شرایط تهویه زمین از جمله شکم زدن) به افزایش میزان فرسایش و
روسپ منطقه متجر خاوه شد (Asghari et al, 2019). این اثر علاوه بر افزایش کاربری اراضی مرتزی
به وسیله مناطق پر شرکتی که در اینجا توسط علاوه بر فرسایش خاک به چرخه شدن سیلئ نشان می‌دهد و کیفیت پویای
خاک را تحت تأثیر قرار خواهد داد. همچنین با مطالعه نیازهای بررسی‌های موجود دریافته‌شده که افزایش
مساحت کاربری مسکونی، با کاهش مساحت کاربری‌های بایر و باغات که تراکم همراه به‌وده‌است، این امر تأثیر
ساخت و سازهای مسکونی را به کاربری‌های بایر و باغات کم تراکم نشان می‌دهد که تخریب باغات کم تراکم را به
همراه داشته و در پی آن به دلیل انسان در محیط (مانند ایجاد ترکیب جاری از جاده‌سازی و عدم رعایت اصول مکانیک
خاک در امکانات منطقه مسکونی و ابتدایی فنی و ...) میزان پانلی فرسایش خاک افزایش می‌یابد. این نوع موارد
علاوه بر اینکه می‌توان تغییرات بسیار زیادی در روندهای هیدرولوژیک منطقه ایجاد کند، به افزایش تمرکز جریان
افرازیان میزان فرسایش ناشی از تجمع جریان، کاهش نفوذ و کاهش میزان تغییرات سطح سفره‌های زیرزمینی نیز منجر
و Toriman و Hessipour (2012) در حضور آب‌آوری دارابکلا استان مازندران، و
همکاران (2015) در منطقه یک بیان کردن اراضی با کاربری جنگلی و پوشش گیاهی که در این منطقه
فرسایش و
روان‌های درد و کاربری کشاورزی و دیم‌زهارا بیشترین میزان فرسایش و روان‌های مطالعه – مطالب دارد.

5- تغییرات گیری

اطلاع از نسبت کاربری‌ها و نحوه تغییرات آن در گذر زمان، یکی از مهم‌ترین موارد در برخی‌های پژوهش و
سیاست‌گذاری است. فرسایش خاک یک مشکل جهانی است که تغییرات آن برای مالک آب و خاک، تهدیدی جدی
به شمار می‌رود. تغییرات کاربری‌های اراضی نیز یکی از مهم‌ترین مسائل اخیر جهان است که تغییرات بسیار زیادی در
سیستم‌های سطح زمین متجر شده‌است. این تغییرات می‌توانند تأثیر بسیار زیادی و بلندمدتی به همراه داشته باشند؛ از این رو،
منطقه کاربری اراضی یکی از عوامل مهم در زمینه فرسایش خاک می‌باشد (2011).

در این تحقیق با استفاده از تصاویر ماهواره‌ای، به ارزیابی پایش تغییرات کاربری‌ای اراضی خاک‌دک در حوضه
آبی‌خزر آق‌الاسپان در سال‌های 1990 و 2008 و نتایج آن در فرسایش خاک برده‌اند. مسیس به منظور طبقه‌بندی
کاربری‌های اراضی از روش‌های گرا استفاده شد. بررسی‌های متناسب داشته که پایش تغییرات کاربری با استفاده از
روش‌های گرا در صورت رعایا کردن تمامی پارامترها که تاثیر مناسب‌تری نسبت به روی‌سایر که خاک‌پایه ارائه
می‌دهد. همچنین نتایج تمامی مطالعات این حضور بانگ‌برتری کاملاً آشکار تکنیک‌های اقتصادی که گرا به پیکسل‌پایه
پژوهش‌های فرسایش محیطی

۹:۲ (۳۴)، تابستان ۱۳۹۸، ۷۱-۵۳

شیوه‌گرا ضمن استخراج و شناسایی دقیق تر پدیده‌ها، می‌تواند در تأکید آن‌که تغییرات نیز تنها مطلوب ترتیب نسبت به روستهای پیکسل‌پایه ارائه‌دهد. تأکید بررسی تغییرات کاربری اراضی در بیابان‌های زمین‌ساله‌های (۱۹۹۰ و ۲۰۱۸) نشان داد. این‌ها در این بیابان‌های زمین‌ساله مربوط به مرتبه‌های مختلفی که در اثر بهره‌برداری شدید، به مور مساعدت خود را به دیگر کاربردها همچون مناطق مسکونی و مناطق کشاورزی و دی‌ویژن اختصاص داده‌است. همچنین کاربری زمین‌پایی که گشته‌زمان، مساحت رو به کاهش داشته و به دی‌ویژن نمی‌تواند تبدیل شده‌باشد. با توجه به نقشه‌های پنهان‌سازی فرسایش خاک در محدوده‌های آفتاب‌گیری‌شده در سال‌های (۱۹۹۰ و ۲۰۱۸)، بطور عمده مناطق با طبقه بندی پر‌خطر و پر‌خطر در کاربردهای دی‌ویژن، مناطق کشاورزی- باغات- پوشش گیاهی قرار دارند و مناطق با خطر کم و بسیار کم در کاربردهای مراوع و مناطق انسان ساخت قرارگرفته‌اند.

مي‌توان گفت تاکید این مطالعه بنا تا تغییرات تمدن‌های مسکونی وهيکوران Khaledian، و هيکوران Esfandiari (2014) و هيکوران DaSilva (2017) و هيکوران Martinez (2011) و هيکوران (2016) در صورت انجام کاربری در میزان فرسایش و رسوب ایجاد می‌کند. با توجه به انواع مناطق در مقاله فرسایش نقاط حفاظتی دارند، از بین رفتکان واقعی‌های طبیعی به کاهش مقاومت خاک، افزایش میزان فرسایش و بین آن، رسوب منجر خواهد شد. با توجه به نتایج تحقیقات مختلف، برتری‌های اراضی مرتعی به اراضی دیم و زمین‌های کشاورزی، شستشو و تولید روان‌های در اراضی شبب دار به ایجاد فرسایش بسیار وسیع می‌انجامد. همچنین که گروه وسیعی از محققان نیز بر این امر تاکید کرده‌اند. همچنین تغییرات کاربری اراضی، تغییرات بسیار زیادی در میزان نفوذ‌پذیری خاک، کاهش تغذیه‌ای آب‌های زیرزمینی و اثرات هیدروژنیک در بلندمدت ایجاد خاک و رشد کرده‌اند از جمله این تغییرات، تبدیل مرتع به مناطق مسکونی و انسان ساخت است که بیشتر میزان تأثیر را در این مورد خواهد داشت. بنابراین با توجه به تناوب و هيکوران Mehmandoust (2017)، هرگونه تغییر در کاربردی اراضی به فرسایش خاک منجر می‌شود که این امر کاهش کیفیت خاک و افزایش حساسیت خاک در نتیجه تغییرات بسیار طبیعی پر‌خطر در سال‌های (۱۹۹۰ و ۲۰۱۸) و به ترتیب ۱۹/۲۵/۲۶/۹۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰۹/۲۲/۵۰
6- سیاسگرایی
نویستگان پروردگار و اخلاق می‌دانند از کمک‌هایی برای افزایش سرکار خانم و پدر در روند این پژوهش، تشکر و
قدرتانی کنند و برای ایشان در تمامی عرصه‌های زندگی آرزوی موافقیت و بهره‌وری دارند.

منابع

 Land Use Changes Using Basic and Object Oriented Pixel Methods and Analysis of Land Use
 Impacts on Soil Erosion (Case Study: Maragheh City), Quantitative Geomorphological
 Researches, Eighth Year, 1, 178-160. (in Persian)
 different soil databases on modeling of hydrological processes and sediment yield in Benin
 (West Africa), Geoderma, 174, 61-74.
 sediment yield: A case study of the submiddle of the SAO Francisco River Basin, Soil and
 Water Engineering, 36 (6), 105-115.
 Erosion and Sedimentation in Latian Watershed. Iranian Journal of Natural Resources. 50 (1),
 49-58. (in Persian)
 Vegetation on the Forms of Sediment Frequency (Study Study of Qazvin RudasanWatershed).
 Geographical Journal of the Land. 11 (42), 62-51. (in Persian)
7. Feizadzade, B., 2017. Modeling Land Use Changes and Its Impacts on Fields Only by GIS
 and Gis Techniques, Journal of Hydrology, 11, 21-38. (in Persian)
 and Influential Parameters in Landscaping / Land Use Classification of West Azerbaijan
 Province. Natural Geography Research. 42 (71), 73-84. (in Persian)
 and Influential Parameters in 84 Land Use Classifications of West Azerbaijan Province,
 Journal of Geographical Research, 7-16. (in Persian)
 Data in Detecting Urban Land Use Changes Case Study of Tabriz Green Space, Journal of
 Fine Arts, 17-24. (in Persian)
 RUSLE Model (StudyCase Study: Darabkt Watershed, Mazandaran, Iran. Master of Watershed
 Management, Faculty of Natural Resources, University of Agricultural Sciences, And Sari
 Natural Resources, 103-118. (in Persian)
12. karam, A.; Safriyan, A.; & Sh, 1389. The pilgrimage pilgrimage. Estimation and Zoning
 of Soil Erosion in the Mamelu BasinTehran) using the modified equation of the worldSoil
 Erosion and Analytical Hierarchy Process, Journal, Earth Knowledge Research, 73-86 (in
 Persian).
 Erosion and Sediment Potential Using Linear Planning Model (Case Study: Chandelier Area of
 Sanandaj). Journal of Soil Science (Agricultural Science and Techniques and Natural
 Resources). 95-111.(in Persian)
18. Martínez-Murillo, M J. F.; Lopez Vicente, M.; Poesen, J.; & J. D. Ruiz Sinoga, 2011. Modelling the effects of land use changes on runoff and soil Erosion in two Mediterranean catchments with active gullies (South of Spain), Landform Analysis, 17(1), 99-104.
studi ng the effects of land use on soil erosion with WLC algorithm. Case of study: Agh Laghan Chay basin

Sayyad Asghari Sarasekanrood1: Associate Professor, Department of Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran.
Mehdi Faal Naziri: Masters Student Remote Sensing, GIS, University of Mohaghegh Ardabili, Ardabil, Iran.
Ali Asghar Ardeshirpy: Masters Student Remote Sensing, GIS, University of Mohaghegh Ardabili, Ardabil, Iran.

Article History (Received: 2019/11/5 Accepted: 2019/12/23)

Extended abstract

1- Introduction

Land use includes all types of land uses to meet different human needs. In other words, land use refers to the type of human use of land, and this type of use is related to the value of the land and (its) natural characteristics. To understand and identify, land use changes using satellite data to provide a broad and integrated view of an area, reproducibility, easy access, high accuracy of data obtained and high analytical speed, as well as performing the classification process a suitable way to map land use. It is particularly widespread in geographical areas. These changes include changes in the hydrological system, effects on erosion, changes in soil physical and chemical properties, and vast changes in land surface morphology, so studying land use changes is one of the (necessities). (The) rain study is the cognition of the face of the earth. Identifying timely and precise land use changes is the basis for a better understanding of the relationships and interactions between humans and land resources. Soil erosion is one of the most important soil (in)fertility factors that nowadays is increasing because of poultry manure loss.

2- Methodology

The data needed in this method include topographic maps, land use, hydrological basin, soil, digital elevation model, slope of the area, as the input to the required model. Soil information is one of the most basic data needed for soil erodibility. WLC model requires soil map to scale with different soil physico-chemical properties such as soil texture, soil moisture percentage, hydraulic conductivity, bulk density. 1: 40,000 was prepared and used by Ardebil Province Natural Resources Department. Digital elevation map was prepared using 1: 25000 topographic map of the study area. In this research, using the topographic map of 1: 25000 scale and digital elevation modeling, the slope map of Agh Laghan Chay Watershed was prepared. The lithology map of the study area was prepared using the 1: 100,000 Geological Survey of Iran Geological Survey. In addition, the standardization-criticalization and weighing methods have been used.

3- Results

The results show that in 1990 the overall accuracy was 95% and the kappa coefficient was 0.93, in 2000 the overall accuracy was 90% and the kappa coefficient was 0.97 and in 2018 the overall accuracy was 93% and the kappa coefficient was 0.91. During the years (1990-2000-2018), significant changes are noticeable, most notably the rangelands and the waste land,
which, due to intensive exploitation, gradually shifts its land to other uses such as residential and agricultural areas, dry land, that have been assigned. Increased area of land use and cropland and agricultural areas in 2000 and 2018, compared to 1990, indicate the degradation of rangelands and the reduction of waste land, which will cause significant changes in the morphological systems of the region, mainly to increase the rate erosion and sedimentation in watersheds, reduction of groundwater recharge, destructive floods and other morphological processes will be due to erosion zoning maps in the study area that in 1990 was very high risk area of 1758/82 hectares. This class of danger per year 2000 and 2018, respectively 08/1912 and 25/1914 hectare is increased and the high class area in 1990, 59/4018, 78/4219 and 31/4481 to ha respectively in 2000 and 2018 is increased. In the erosion map of the years 1990-2000-2018, mainly high-risk and high-risk areas are located in agricultural, orchard and residential land uses; therefore, different land use changes in the area have caused changes in the morphological trends of the area.

4 Discussion & Conclusions

Knowing the ratios of land uses and how they change over time is one of the most important issues in planning and policy making. Soil erosion is a global problem that threatens land-use such as changes in water resources. Land use changes are one of the most important issues in the recent world which causes many changes in land surface systems, including geomorphic systems. Land use is one of the most important factors in soil erosion. The results show more accuracy of object-oriented classification. Studies also show that monitoring land use changes using object-oriented methods yields better results when observing all parameters. In the study of land use changes over the years 1990–2012, the results showed that there were major changes in this period of time and It is related to dense rangelands that, due to intensive exploitation, have gradually devoted their land to other uses, such as residential and agricultural areas, and land use, and wasteland has declined over time and has become land and agricultural land. According to soil erosion zoning maps in the study area of Agh Laghan Chay, In the years (1990-2000-2018), mainly high risk and high risk areas are in land use, agricultural, orchard, vegetation and high risk areas. Comfy and very comfy are located in rangelands and man-made areas. The results also showed that the area of high risk class in the years (1990 - 2000 - 2018) was 11.20, 12.20 and 12.22%, respectively, and the area of high risk class in the years (1990-2000-2018), respectively. The order is 25.59, 26.65 and 28.29, which is increasing like many high-risk classes, due to the increase in residential area. It seems necessary to preserve natural areas, stabilize and legalize land use, erosion control and soil and water conservation practices in the context of high erosion potentials, within the framework of other conservation schemes. Get it. Civilians and governmental and non-governmental organizations in the region can manage and monitor land use changes.

Key Words: Object Oriented Classification - Land Use - Landsat Pictures - Soil Erosion - Ag Laghan Chay.