بررسی اثرات کاربری اراضی بر فرسایش خاک با الگوریتم WLC

مطالعه موردی: حوضه آقیفه آقیفانچای (تاریخ مقاله: تاریخ دریافت: 1389/12/21)

مهدی فعال نژاد

بحث خاک، محیطیت بیوت تری و تغییرات جهانی در سطح دنیا پیدا کرده است؛ این روند مطالعات تغییرات اراضی خاک در اثر تغییرات اراضی ضروری است. بنابراین، در این پژوهش به بررسی روند تغییرات کاربری اراضی در حوضه آقیفه آقیفانچای استان اردبیل تأثیر آن بر فرسایش خاک برداشت شده. بدین منظور، نقشه کاربری اراضی سال‌های مورد مطالعه با استفاده از روش مقاله و الگوریتم نرم‌افزاری انجام گرفت. نتایج بیان می‌کند که اثرات اراضی بر فرسایش خاک نیز با استفاده از نقشه‌ای کاربری اراضی و عوامل شیمیایی شامل ژئولوژی، شیم‌آنی یاده‌ای، فضای اراضی اثر خواهد کرد. با انجام بررسی‌های پیش‌بینی بررسی‌های فرسایش نتایج که در سال‌های 1990، 2000، 2018، بطور عمده منتشر بیش از دویست صورت گرفت. بر اساس تشخیص پیش‌بینی، این نتایج خیلی بهتری نسبت به ناحیه برخط و مناطق برخط در کاربری‌های دیزئور و مناطق کشاورزی دیگر قرار دارد. با توجه به پیش‌بینی فرسایش خاک در مناطق دیگر استان، مساحت محیط بی‌طرف بسیار برخط به ترتیب 12/20 درصد و تقریبهای بزی به ترتیب 95/59 درصد است که افزایش فرسایش خاک را در دژ زمان نشان می‌دهد. نتایج نشان داد نگرانی و تبادل آن به مناطق کشاورزی و مناطق خاکی، بیشترین میزان تأثیر را بر فرسایش خاک داشته است.

واژگان کلیدی: استانداردازی، تصاویر، طبقه‌بندی، شیء‌گرا، فرسایش خاک، کاربری اراضی

1- مقدمه

کاربری اراضی، یکی از فعالیت‌های تعاملی بین انسان، محیط زیست و ترکیبی نوآوری بهره‌برداری انسان برای یک نتیجه بر روز زمین ممکن می‌سازد و مهم‌ترین اثر اساسی استفاده از زمین با تأکید بر نقش کاربردی زمین در فعالیت‌های انسانی و اقتصادی تعریف می‌شود (Nazari et al, 1389) فعالیت‌های انسانی و اقتصادی موجود بر روی کاربری اراضی به تغییرات اساسی در آن منجر می‌شود. از جمله این تغییرات می‌توان به تأثیرات منفی در عملکرد...
فرسایش خاک اشاره کرد که باعث تغییر در دسترسی به منابع آب شده است و به ایجاد گستره دیم و افزایش فرسایش خاک می‌باشد. (DaSilva et al, 2016) تغییرات کاربری اراضی یکی از عوامل مهم در تغییر جریان هیدرولوژیک و فرسایش خاک است. (Safarian et al, 2011) فرسایش خاک یکی از مهم‌ترین عوامل تخریب و کاهش باروری خاک است که امروزه در حال افزایش بیشتری و به‌دست رفتن خاک مرغوب کشاورزی منجر می‌شود. (Traphathidk et al, 2011) امروزه این پدیده به دلیل دخالت‌های غیرکارشناسی‌های انسان، از روش‌های حیاتی خارج شده و تبعیض جبران‌نپذیری از جمله هر رفتار خاک. کاهش سطح زمین‌های کشاورزی، کاهش عمر مفيد‌سدهای مخزنی را در پی داشته‌است (karam et al, 2013). محیط استفاده می‌شود که از مرتبین آنها می‌توان استفاده از تکنیک‌های دوربین‌گیری و سیستم اطلاعات جغرافیایی اشاره کرد (Wessels et al, 2004). بنا براین، می‌توان گفته استفاده از داده‌های سنجش از دور در محیط می‌تواند شناخت مناسبی از چگونگی تغییرات کاربری اراضی ارائه دهد و در مدیریت آن بیشتری. (Shataee, 2007) راهکارهای مناسب برپزند (Mahdavi et al, 2011) روش‌های ارزیابی چندنوعی، این امکان را فراهم می‌سازد که می‌توان حاکمیتی از طریق هزمان در تعیین بهترین گزینه و مناسب‌ترین شرایط بکار گرفته شود. این روش، رایج‌ترین و پرپراکترین روش در مطالعات فرسایش خاک بیشتر می‌رود. (malczewski, 2004) در این پژوهش، از روش ترکیب خطی وزنی (wlc) به عنوان یکی از روش‌های تصمیم‌گیری چند معياره استفاده شده است.

تاکنون مطالعات فراوانی پیرامون بررسی نقش کاربری در فرسایش خاک در ایران و سایر کشورها انجام شده- است که به برخی از آنها اشاره می‌شود. (Petropoulos و همکاران, 2013) با استفاده از دو روش شیء‌گرا و ماسکی- بردار پشتیبانی، به تهیه نقشه‌های گوناگونی در این بافت‌ها به تهیه نقشه‌های کاربری اراضی مناسب می‌باشد، ولی روش شیء‌گرا نسبت به روش ماسکی بردار پشتیبانی، محصول کلی و ضریب کلی بالاتری دارد. (Santos و همکاران, 2017). به بررسی تغییرات کاربری اراضی و نقش آن بر فرسایش خاک در برخی برداشتند. (Feizadzade و همکاران, 2017) این تغییرات کاربری اراضی و نقش آن در فرسایش حسوزی علی‌اکبری بررسی کرد و دریافت تبدیل اراضی مرتعی برپراکم به مرتع کم تراکم و زراعت دیم، مهم‌ترین عامل در فرسایش منطقه است. (Ashghi و همکاران, 2017) به بررسی تغییرات کاربری اراضی با استفاده از روش‌های پیکسل پایه و مشه‌گر و تحلیل تأثیرات تغییر کاربری‌های فرسایش خاک (مطالعات موردی: شهرستان مراغه) برداختند.

طبق نتایج حاصل از پهنه‌بندی خطر فرسایش در مسطح منطقه‌ای مطالعاتی، مساحت طبقه‌بندی بسیار بزرگ و پرخطر بوده و ترتیب از ۹۱ به ترتیب ۱۵/۸۸ و ۲۹/۸۶ درصد در سال ۲۰۰۰ به ۱۳/۸۶ و ۲۹/۸۶ درصد در سال ۲۰۱۷ افزایش یافته‌است که کاهش میزان مرتفع در سال‌های مورد بررسی را نشان می‌دهد. در بیان مستندی‌های ضروری این پژوهش پایه بررسی شده که تغییرات

\[1 \text{ Weighted Linear Combination} \]
پژوهش‌های فرسایش محیطی ۹:۲ (۳۴)، تابستان ۱۳۹۸، ۷۱-۵۳

كاربری اراضی چه تأثیری بر فرسایش خاک حوضه آبخیز آق‌آرامچای شهرستان نیبا در استان اردبیل دارد؟ و در بازدید زمانی (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸)، چه مقدار تغییرات در این حوضه در زمینه فرسایش خاک صورت گرفته است؟ نوآوری این تحقیق نسبت به تحقیقات مشابه استفاده از طبقه‌بندی شیء گرا با الگوهای ندیکه‌ترین همسایگی می‌باشد که در تحقیقات قبلی، عمداً از طبقه‌بندی پیکسل‌پایه برای بهره‌برداری از شکل‌ها از اراضی استفاده شد. ذکر این امر لازم است که پردازش‌های مطابق گرا در مقابل پردازش پیکسل‌پایه، دقت و کارایی بسیار بالاتری دارد که از سوی گروه وسیعی از پژوهندگان تأیید شده است. به طور کلی، هدف از این پژوهش بررسی اثرات کاربری های مختلف بر فرسایش خاک در حوضه آق‌آرامچای است.

۲- منطقه مورد مطالعه

حدودی‌های مورد مطالعه حوضه آبخیز آق‌آرامچای، در شهرستان نیبا در استان اردبیل واقع است که با وسعت ۱۴۵ کیلومترمربع، در مناطق جغرافیایی ۲۳ درجه و ۱۰ دقیقه تا ۲۸ درجه و ۱۲ دقیقه ۲۰ درجه و ۱۹ دقیقه، غرب ایران و در دامنه جنوب شرقی شهر سیلان قرار دارد. خاک‌های حوضه آق‌آرامچای شامل جهار نوع خاک براون-کالویال، کالویال، لیتوسول و لیتوسول-کالویال است. خاک‌های ریزمان (مشه لیتوسول در واحد دشت منطقه) در سطح این حوضه، از درصد زیادی رس، مارن و سیلت تشکیل شده است و محور زیادی نیز دارد (Sobhani et al. 1376). از نظر زمین‌ساختی، منطقه مورد مطالعه در زون زمین‌ساختی البرز غربی – آذربایجان قرار دارد. شکل ۱، موقعیت منطقه آق‌آرامچای استان اردبیل را نشان می‌دهد.

[شکل ۱: موقعیت حوضه آب‌نرگ آق‌آرامچای شهرستان نیبا در استان اردبیل.(منبع: نویبندگان، ۱۳۹۸)]

۳- مواد و روش

پژوهش مورد نظر از نوع تحقیقات کاربردی و روش آن، تحلیل مبتنی بر تلفیق آنالیز داده‌ها و تکنیک‌های سنجش از دور و سیستم اطلاعات جغرافیایی است. بکی از روش‌های مورد استفاده به منظور بررسی اثر تغییر کاربری اراضی پر
بررسی اثرات کاربری اراضی بر فرسایش خاک...

فرسایش خاک، روش ترکیب خطی وزنی (WLC) است. این روش به عنوان یکی از روش‌های تصمیم گیری چند معیاره مطرح شده است. به طور کلی، روش ترکیب خطی وزنی (WLC) مراحلی دارد که عبارت است از: 1- استاندارد سازی نقشه‌های معیار؛ 2- تعیین وزنه‌های معیار؛ 3- انجام لایه‌ای نقش‌های استاندارد شده وزنی (ضرر به لایه‌ای نقشه استاندارد شده وزنی)، 5- برآورد نمره‌ی امتیاز کل (گرینینگ) که بالاترین امتیاز (رتبه) را دارد به عنوان بهترین گزینه شناخته می‌شود (2006). مدل‌ها و ابزارهای مورد انداز در این روش، نقش‌های توپوگرافی، کاربری اراضی، راه‌های ارتباطی، فاصله از آب‌های خاکی، شناسایی، مدل ارتفاعی و شبیه‌ساز می‌باشد. در ادامه، تدوین تهیه این ورودی‌ها شرح داده شده است.

شکل 2: روندهای سلسله‌ی کاربری اراضی

(نمی: نویسنده‌گان، 1398)

تهیه نقشه‌ی کاربری اراضی

کاربری اراضی از عوامل تأثیرگذار بر فضای زیست‌محیطی فرسایش خاک و کاهش در آمده‌های حاصل از اراضی است و با تعیین کاربری اراضی مناسب، می‌توان به توسعه‌ی پایدار دست یافت (Dadkhah and Najafinejad، 1997). در تحقیق حاضر نیز با هدف استخراج کاربری اراضی حوضه آبخیز آقآلا-قانچی، ابتدا تصاریف ماهوراهی لندس نشست از سنجش‌های برای سال‌های (1990، 2000 و 2018) در دانشگاه آموزش و پرورش آموزشی آمریکا انجام شد (جدول 1). برای استخراج نقشه‌ی کاربری اراضی از ترکیب پانده‌های مراثی (آبی، سبز و قرمز) و مادون قرمز نزدیک ماهوراهی

1 Weighted Linear Combination
2 Land use
3 Soil
4 Digital elavation model
5 Slop
6 Operational Land Imager
7 Thematic Mapper
لنست، برای طبقه‌بندی استفاده شد. ذکر این امر لازم است که برخلاف طبقه‌بندی پیکسل پایه، در طبقه‌بندی شیء گرا ترکیب چهار باند (530، 590 و 730 ماهواره‌ای لندست ممکن می‌باشد. سپس به منظور آمارسازی تصاویر، تحقیقات هندسی و انسپیری با استفاده از روش مایورت 3 صورت گرفت. در Envi5.3 نهایت، طبقه‌بندی با روش شب‌ها و الگویی تبدیل به همسایگی توسط گزارش حکایت ضرسایش محیطی 9:2 (34) تابستان 1398، 71-53

79
... index
8 Precipitation Concentration Index
9 Gray Level Co-Gray Level Co-Occurrence Matrix
10 Maximum likelihod

(Rezaei et al, 2010) می‌تواند با ترکیب طبقه‌بندی شیء گرا، فرآیند قطعه‌بندی است. در آن خطیت ژیستی، ضریب فشردگی و معیار نرم، فرآیند قطعه‌بندی تصویر را انجام دهد و برابر نسبت اهمیت هر یک از این عوامل در خصوصیات کلاس‌های مورد ذکر، برای استخراج از تصاویر ماهواره‌ای، نسبت بایان آن را در فرآیند قطعه‌بندی اعمال کند (Feiziazeh et al, 2008). در این قطعه‌بندی از روش قطعه‌بندی می‌بایست صورت‌گیری یابد. در این منظور با تجربه و تحلیل، میزان 0.5 و شکل 0.0 و ضریب فشردگی 0.3 برای قطعه‌بندی انتخاب شد. قبل از طبقه‌بندی به روش شب‌ها، لازم است قطعه‌بندی تصویر صورت گیرد (شکل 3).

در این پژوهش، پارامترهای مؤثر بر استخراج کلاس‌ها را در طبقه‌بندی شیء گرا شامل این موارد است: 1- انحصار معیار باندها: انحراف معیار یکی از شاخص‌های پراکندگی است که کنش می‌دهد. داده‌ها به‌طور مناسب به چه میزان از مقدار متوسط فاصله دارند. در این شاخص از مقدار متوسط شماگی باند مادون‌مرمر و قربم و سپر استفاده شد. 2- شاخص NDVI، در این پژوهش از شاخص محاسبه‌ی بهتر یکی گیاهی از بقیه پیده‌ها استفاده شد. 3- PCI شاخص 4- واریانس: واریانس برای محاوره‌بافت شاخص‌های تابعی می‌داند. 5- در شاخص هندسی، از پارامترهای مؤثری، چون حداکثر اختلاف‌ سه باند یک یا پراکندگی در اطراف میانگین از روش GLCM سرول‌ها داخل به کار گرفته می‌شود. 6- در شاخص هندسی، از پارامترهای مؤثری چون حداکثر اختلاف، درجه روشنایی، ضخامت، مساحت و فشردگی استفاده شد. در این پژوهش برای بررسی صحت طبقه‌بندی از نرم‌افزار Envi 5.3 استفاده شد؛ بین منظور، ابتدا برای هر کاربری 50 نمونه از سطح محدوده برداشت شد. سپس با استفاده از Arc Gis 10.5 و در محل‌های مورد نظر، بخش‌بندی صورت گرفت. در محل‌های بعدی، طبقه‌بندی شیء گرا و بخش‌بندی فراوانی با مقایسه تکه‌بندی گروه 7 و تکه‌بندی شیء گرا با پکیج آن دیگر انجام و در نهایت، ضریب کاپا و صحت کلی تعیین گردید.

برای خروجی تمامی تقسیمات طبقه‌بندی شده به روش شب‌ها، لازم است از نرم‌افزار Arc Gis استفاده شد.
جدول 1: خصوصیات تصویر سنجند (TM-OLI) از ماهواره لندست (منبع: نویسندگان)

<table>
<thead>
<tr>
<th>تصویر</th>
<th>رده/گذر</th>
<th>زاویه ارزوی حورشید</th>
<th>زاویه ارتقاع حورشید</th>
<th>تاریخ اخذ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>02/07/2000</td>
<td>167/34</td>
<td>157/34</td>
<td>1990/07/02</td>
</tr>
<tr>
<td>OLI</td>
<td>02/07/2018</td>
<td>42/121</td>
<td>44/66</td>
<td>2000/07/02</td>
</tr>
</tbody>
</table>

شکل 3: نموده تصویر فضایی به دست حوضه آبخیر آقلاوانچای شهرستان نیر در استان اردبیل (منبع: نویسندگان، 1398)

تهیه نقشه‌های معیار

اطلاعات خاکشناسی، از اساسی ترین اطلاعات موردی سازی فرسایش خاک است. مدل ترکیب خاک و زندر برای بررسی فرسایش خاک، به خصوصیات مختلف فیزیکی-شیمیایی خاک تا زمان است. از قبیل، بافت خاک، درصد رطوبت در دسترس خاک و هدایت هیدرولوژیکی برای مقدارهای مختلف خاک (Bossa et al., 2012) در این پژوهش، نقشه‌های خاک منطقه با مقياس 1:10,000 از اداره ملی زبان طبیعی استان اردبیل سال (1389) تهیه گردید. همین طور نقش‌های ارتفاعی رقومی، با به‌کارگیری نقشه‌های توپوگرافی 1:10,000 منطقه‌ای مطالعاتی تهیه و استفاده شد. در این تحقیق با استفاده از نقشه‌های توپوگرافی منطقه با مقياس 1:10,000 و تهیه مدل رقومی ارتقاعی، نقشه‌های شبیه حوضه آبخیر آقلاوانچای تهیه شد. برای استخراج نقشه‌های سنجش‌های محیطی، از نقشه‌های زمین‌شناسی، کشور سال (1389) استفاده شد. نقشه‌های راه‌های ارتباطی و نقشه‌های آب‌اپشی خاک حوضه آبخیر آقلاوانچای، از مطالعات امپایر سرزمین و سند راهبردی توسعه استان اردبیل (1395) تهیه گردید. نقشه‌های بافت نیز با استفاده از رابطه گرادیان H بارش (رباطه 1) محاسبه و نقشه‌های باشت ارتقاع شد. شکل 4: نقشه‌های معیار دوک شده را نشان می‌دهد. مؤلفه P

P=0.228 H – 86.6

رباطه 1

1 www.ardabil.frw.org.ir
2 www.gsi.ir
روش ترکیب خطی وحنی

در این پژوهش، از روش فازی برای استانداردسازی استفاده شد. در مجموعه‌های فازی بهترین ارزش عضوی مقدار یک را به حداکثر عضویت در مجموعه تعلق می‌گیرد و کمترین ارزش عضویت، به مداخلت عضویت در مجموعه ضریب تصویری در محدوده‌ای از همیت نسبی به هر نشانه‌ی معیار اختصاص داده می‌شود. در این مطالعه از روش وزنده کریدیکا استفاده شد.

روش وزنده کریدیک

در روش وزنده کریدیکک، داده‌ها بر اساس میزان تداخل و تضاد موجود بین عوامل یا معیارها تجزیه و تحلیل می‌شود. در روش کریدیکک برای هر معیار ارزیابی دامنه‌ای از تغییرات مقدار اندیشه که در میان پیک‌ها (گرینه) وجود دارد که در قالب یک نمود عضویت بین می‌شود. هرکدام از بردارهای تشكل‌شده برای معیارهای مورد استفاده، دارای پارامترهای آماری از جمله انحراف معیار است. این پارامترها در جهت تباین‌ها در مقایسه معیار مربوط به نشان می‌دهد. پس برای محاسبه‌ی انحراف معیار عوامل و معیارهای موردبررسی، ماتریس مقارنی به ابعاد mxm به وجود می‌آید که شامل ضرایب همبستگی بین بردار

1 Weighted Linear Combination
2 Critic
پرسی اثرات کاربری اراضی بر فرسایش خاک...

تشکیل شده است (Malchevsky, 2006). با تغییر پارامترهای بالا، تضاد موجود بین میزان اپا و میزان دیگر از رابطه 2 محاسبه می شود.

\[c_{jk} = \sum_{k=1}^{m} (1 - r_{jk}) \]

(1) رابطه 2

در این رابطه، \(c_{jk} \) معرف مجموعه تضاد معیار \(j \) معیار \(k \) است که از شرور شده و \(r_{jk} \) ادامه دارد و Malchevsky, (2006)، همیستگی بین دو معیار \(k \) و آرا نشان می دهد. میزان اطلاعات \(j \) از رابطه 3 محاسبه می شود (\(r_{jk} \)).

\[c_{j} = \delta_{j} \sum_{k=1}^{m} (1 - r_{jk}) \]

(2) رابطه 3

در این رابطه، \(c_{j} \) معرف میزان اطلاعات معیار \(j \) در مقدار مربوط عامل یا معیار آرا نشان می دهد. با توجه به رابطه 4، معیارها که \(c_{j} \) بیشتری دارند، وزن زیادی به خود اختصاص خواهند داد. وزن هر عامل مانند

\[w_{j} = \frac{c_{j}}{\sum_{k=1}^{m} c_{j}} \]

(3) رابطه 4

در این رابطه، \(w_{j} \) معرف وزن معیار \(j \) و \(c_{j} \) میزان اطلاعات مجموع معیارها است که از شرور شده و \(r_{jk} \) ادامه دارد. استفاده از روش کریتیک در وزنده معیارها در پژوهش حاضر، می تواند گامی در جهت حل معقل انتقال صفات از یکدیگر باشد. به طور رسمی، در قاعده تصادفی گیری برای آزمایش هر گروه از رابطه ی 5 استفاده می کنیم (Malcnevsky, 2006).

\[A_{i} = \sum_{j} w_{j} x_{ij} \]

(4) رابطه 5

در این رابطه، \(A_{i} \) معرف نمره گروهی آم در ارتباط با صفت \(i \) و \(w_{j} \) مشتمل بر یک وزن استاندارد شده است که در مجموع، وزنها برای یک می شود (\(\sum_{j} w_{j} = 1 \)). وزنها اهمیت نسبی هر صفت را نشان می دهد. با تغییر ارزش حداکثر \(\text{گزینه انتخاب می شود (2006)} \).

(Malchevsky, 2006)

4- یافته‌ها (نتایج و بحث)

در این پژوهش، طبق پیدا، تئوره و تئوره برآیده به صورت یک گزارش گرفته و با استفاده از نمونه‌های علمی به طبق پیدا تئوره پردراخته شد. دید ترتیب، نقش‌های یکی را از روش‌های گروهی در نرم‌افزار Ecognition مربوط به سال‌های (1999 و 2018) استخراج شد (شکل 5). تعداد 11 کلاس شامل نواحی انسان ساخت، مرجع ضعیف، مرتب متراکم، مرتب کم تراکم، پوشش بر فرازی، پوشش بر فراز، تغییرات، مناطق کوهستانی، مناطق کشاورزی، زمین‌های پایین و باغات در این ناحیه مورد تحلیل استخراج شد. سپس صحبت طبق پیدا برای سال‌های ذکر
پژوهش‌های فرسایش محیطی
شده در نرم‌افزار Envi 5.3 بررسی و تجین شد (جدول ۲)، در نهایت به‌منظور گرفتن خروجی و ساخت نقشه، این طبقه‌بندی ها به نرم‌افزار ArcGIS 10.5 منتقل داده شد.

شکل ۵: نقشه طبقه‌بندی نسبت به کاربری اراضی سال ۲۰۱۸ و ۹۰ و حوزه آب‌و‌هوای آب‌و‌هوای محیطی شهرستان نیر در استان اردبیل

جدول ۲: بررسی صحت طبقه‌بندی کاربری اراضی حوزه آب‌و‌هوای آب‌و‌هوای محیطی شهرستان نیر در استان اردبیل

<table>
<thead>
<tr>
<th>سال</th>
<th>۱۹۹۰</th>
<th>۲۰۰۰</th>
<th>۲۰۱۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب کاپا</td>
<td>۰/۸۶</td>
<td>۰/۹۴</td>
<td>۰/۸۳</td>
</tr>
<tr>
<td>صحت کلی</td>
<td>۹۵%</td>
<td>۹۸%</td>
<td>۹۳%</td>
</tr>
</tbody>
</table>

نتایج جدول ۲ نشان می‌دهد که در سال ۱۹۹۰، صحت کلی ۹۵ درصد و ضریب کاپا برای با ۰/۸۶ و در سال ۲۰۰۰، صحت کلی ۹۸ درصد و ضریب کاپا ۰/۹۴ است. با توجه به صحت کلی نقشه‌ها و با استناد و مقایسه با منابع نظر (Lillesand et al., 2009)، نتیجه‌بستگی می‌تواند با ۹۸ درصد مطمئن در صحت یک نتیجه‌بستگی باشد. با توجه به اینکه آمار کاپا در حوزه آب‌و‌هوای محیطی شهرستان نیر در سال ۲۰۱۸ به‌طور کلی نتیجه‌بستگی می‌شود، این نتایج می‌توانند به عنوان گزینه‌های مناسب نیازهای اطلاعات در زمینه اطالعات تولید شده باشد. همچنین در جدول ۳ سیاست‌های کاربری اراضی شهرستان نیر در حوزه آب‌و‌هوای محیطی در سال‌های ۱۹۹۰، ۲۰۰۰ و ۲۰۱۸ بررسی شد.

مراقبت همیشه می‌باشد.
جدول 3: درصد مساحت کاربری حاصل از طبقه‌بندی سال‌های (1390, 2000 و 2018) حوزه آب‌های آق‌آلاانگانجرش‌مانی نیز در استان اردبیل

(منبع: توبنگان، 1398)

<table>
<thead>
<tr>
<th>سال</th>
<th>کلاس کاربری اراضی</th>
<th>2018</th>
<th>2000</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>دیپزار</td>
<td>23/51</td>
<td>4/31</td>
<td>0/85</td>
</tr>
<tr>
<td></td>
<td>منطقه کوهستانی</td>
<td>3/10</td>
<td>4/55</td>
<td>2/88</td>
</tr>
<tr>
<td></td>
<td>مناطق انسانساخت</td>
<td>9/58</td>
<td>0/16</td>
<td>0/82</td>
</tr>
<tr>
<td></td>
<td>منطقه کشاورزی</td>
<td>18/83</td>
<td>5/76</td>
<td>1/18</td>
</tr>
<tr>
<td></td>
<td>مرغ</td>
<td>3/36</td>
<td>10/24</td>
<td>19/16</td>
</tr>
<tr>
<td></td>
<td>برف</td>
<td>1/03</td>
<td>1/27</td>
<td>11/58</td>
</tr>
<tr>
<td></td>
<td>مرغ کم تراکم</td>
<td>9/68</td>
<td>1/15</td>
<td>2/77</td>
</tr>
<tr>
<td></td>
<td>مرغ متراکم</td>
<td>20/47</td>
<td>3/24</td>
<td>5/33</td>
</tr>
<tr>
<td></td>
<td>بوشگاهی</td>
<td>20/21</td>
<td>4/56</td>
<td>1/09</td>
</tr>
<tr>
<td></td>
<td>زمین بایر</td>
<td>1/93</td>
<td>11/17</td>
<td>19/83</td>
</tr>
<tr>
<td></td>
<td>باغات</td>
<td>20/9</td>
<td>1/45</td>
<td>8/07</td>
</tr>
</tbody>
</table>

نتایج به دست آمده از جدول 3 نشان می‌دهد که در سال‌های (1390 و 2000 و 2018) تغییرات چشم‌گیری قابل مشاهده است. از عمدترين ان تغییرات می‌توان به مراتع و زمین‌های بایر اشاره کرد که به مرور در اثر بهره‌برداری شدید، به دیگر کاربری‌ها همچون مناطق مسکونی، مناطق کشاورزی و دیپزار تبدیل شدند. افزایش مساحت کاربری انسانساخت و دیپزار و مناطق کشاورزی در سال‌های 2000 و 2018 نسبت به سال 1390، بیانگر تغییرات مراتع و کاهش زمین‌های بایر است که همین امر تغییرات بسیار زیادی در سیستم‌های مورفولوژیک منطقه ایجاد خواهد کرد. این تغییرات عمداً به افزایش مراتع و رسوب در حوضه‌های آبی‌انگیز، کاهش میزان تغذیه آب‌های زیرزمینی، پرورش سیلاب‌های محور و سایر فرآیندهای مورفولوژیک منجر خواهد شد. همان‌طور که نتایج Riyahi و همکاران (1372) نشان می‌دهد، در شرایط بارش‌های یکسان در بین بین شدت بوشگاهی منطقه و افزایش سطح نفوذ‌ناپذیری تغییرات دبی و حجم رواناب در منطقه افزایش معنی‌داری خواهد یافت که این امر می‌تواند به ایجاد تغییر بسیار گسترده در منطقه منجر شود. در این پژوهش در انداره‌گیری میزان‌ها برای بررسی فرسایش خاک، داده‌های متوسط از مقياس‌ها وجود دارد؛ از این رو، لازم است معرفی کنیم چگونه با استفاده از این مستند شیب‌ها و متعلق به ارزش‌گذاری و استانداردسازی به صورت تومور و بر میناها ارزش عضویت در مجموعه فاژی در نظر گرفته شود. در پژوهش حاضر، ارزش عضویت بین مقدار 1 تا 0 قرار دارد. تفسیرهای استاندارد شده مربوط به میزان‌های محور در مطالعه حاضر، در شکل 6 نشان داده شد.
پژوهش های فرسایش محیطی 9:2 (34)، تابستان 1398، 71-53

نقشه ۶: نتایج آزمایش‌های میدانی فرآیند فرسایش خاک از استان اردبیل و در بخش‌های مختلف آن در حوزه آبگیری زمین‌های محیطی توسط متراکم‌های فرسایشی در طی سال‌های ۱۹۹۰ و ۲۰۰۰ و ۲۰۱۸ استخراج شد (۶). مساحت و تعداد پیکسل‌های مربوط به هر یک از پیکسل‌های زیر نیز در جدول ۵ ذکر شد.

برای پهنه‌ی فرسایش خاک، ابتدا وزن‌دهی معمولی را انجام می‌دهیم. مفروضات پایه‌ای و وزن حاصل از وزن‌دهی کریتیک معمولی‌ها در جدول ۳ آورده شده است. سپس با اجرای دیگر مرحله در ترکیب خظی وزن‌دار، نقشه‌ی پهنه-بخشی فرسایش در ۵ طبقه‌ی بیشتر به وجود آمده در پژوهش زمین‌های زراعی (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) استخراج شد (نقشه ۶).
بررسی اثرات کاربری اراضی بر فرسایش خاک...

جدول ۳: مجموعه تصادف انحراف معیار، میزان اطلاعات و وزن نهایی معیارهای طرح در شهرستان آبدالی (مراجع: چبی، ۱۳۸۹)

<table>
<thead>
<tr>
<th>وزن نهایی</th>
<th>میزان اطلاعات</th>
<th>انحراف معیار</th>
<th>مجموع تصادف</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب</td>
<td>۰/۲۶</td>
<td>۰/۱۴۱</td>
<td>۰/۱۴۱</td>
</tr>
<tr>
<td>لیتولوژی</td>
<td>۰/۴۷</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>کاربری</td>
<td>۰/۱۶</td>
<td>۰/۱۴۰</td>
<td>۰/۱۴۰</td>
</tr>
<tr>
<td>خاک ۱۹۹۰</td>
<td>۰/۲۰</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>بارش</td>
<td>۰/۱۹</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>فاصله از آباده</td>
<td>۰/۱۳</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>راه ارتباطی</td>
<td>۰/۰۲</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>شیب</td>
<td>۰/۰۹</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>لیتولوژی</td>
<td>۰/۲۶</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>کاربری</td>
<td>۰/۲۹</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>خاک ۲۰۰۰</td>
<td>۰/۳۹</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>بارش</td>
<td>۰/۱۹</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>فاصله از آباده</td>
<td>۰/۱۳</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
<tr>
<td>راه ارتباطی</td>
<td>۰/۰۲</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۹</td>
</tr>
</tbody>
</table>

برای تحلیل شخصی اثرات در فرسایش خاک حویض آباده، معیارهای شیب لیتولوژی، کاربری، خاک، بارش، فاصله از آباده و راه ارتباطی تحلیل شد. می‌توان گفت استفاده از روش کریپک در وزنده‌ی معیارها در پژوهش حاضر، می‌تواند گامی در جهت حل معقل استقلال صفات از یکدیگر باشد که به هنگام مقایسه‌ی روژه کرام‌الی (۱۳۸۹) زیرا در این روش و وجود همبستگی بالای یک معیار با معیارهای دیگر می‌تواند در کاهش وزن آن معیار نیز تأثیر گذار باشد. بنابرنا نتایج حاصل از وزنده‌ی از عوامل مؤثر در ایجاد فرسایش خاک در محدوده‌ی
پژوهش‌های فرسایش محیطی ۹: ۲ (۳۴)، تابستان ۱۳۹۸، ۷۱-۵۳

مورد مطالعه عوامل لیتوژنیک به ضریب وزنی (۱۶/۰۰)، بارش با ضریب وزنی (۱۹/۰۰)، شیب با ضریب وزنی (۱۲/۰۰) و کاربری اراضی با ضریب وزنی (۱۰/۰۰) از مهم‌ترین عوامل ایجاد فرسایش خاک در حوضه آبخیز آق‌آلا کنیز نیز باشند.

شکل ۷: نقشه‌ی پهن‌بندی فرسایش خاک در سال‌های (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) حوضه آبخیز آق‌آلا کنیز نیز استان اردبیل

(مع: نویسنده، ۱۳۹۸)

جدول ۵: اطلاعات طبقات حفر فرسایش سال‌های (۱۹۹۰، ۲۰۰۰ و ۲۰۱۸) حوضه آبخیز آق‌آلا کنیز نیز استان اردبیل

(مع: نویسنده، ۱۳۹۸)

<table>
<thead>
<tr>
<th>طبقه حفر</th>
<th>بسیار برخطر</th>
<th>متوسط برخطر</th>
<th>کم برخطر</th>
<th>مساحت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۰۰/۲۵</td>
<td>۲۴/۱۱</td>
<td>۲۰/۲۶</td>
<td>۲۶/۵۴</td>
<td>۲۸۸/۵۸</td>
</tr>
<tr>
<td>۱۹۹۰/۲۵</td>
<td>۱۹/۸۱</td>
<td>۲۱/۱۲</td>
<td>۲۵/۱۸</td>
<td>۱۹۸۱/۳۱</td>
</tr>
<tr>
<td>۲۰۱۸/۲۵</td>
<td>۱۹/۸۱</td>
<td>۲۴/۱۱</td>
<td>۲۰/۳۳</td>
<td>۱۹۸۱/۳۵</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>۲۰۰۰/۲۵</td>
<td>۲۰/۳۳</td>
<td>۲۰/۳۳</td>
<td>۲۰/۳۳</td>
<td>۲۰/۳۳</td>
</tr>
<tr>
<td>۱۹۹۰/۲۵</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
</tr>
<tr>
<td>۲۰۱۸/۲۵</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
<td>۱۹/۸۱</td>
</tr>
</tbody>
</table>

با توجه به نقشه‌های پهن‌بندی فرسایش در محدوده مطالعاتی می‌توان گفت در سال ۱۹۹۰، مساحت طبقه‌ی بسیار برخطر ۱۷۵۸/۲۴ هکتار بوده که این مقدار در این طبقه از حفر در سال‌های ۲۰۰۰ و ۲۰۱۸ به ترتیب ۸/۰۰ و ۱۹/۱۲/۲۵ و ۱۹/۱۲/۲۵ هکتار به ترتیب در سال‌های ۲۰۰۰ و ۲۰۱۸ و ۲۰۱۸ ترتیب گرفته‌است. در نقشه‌های فرسایش سال‌های ۲۰۰۰ و ۲۰۱۸ به طور عمده...
مناطق با طبقات بسیار پرخطر و پرخطر در کاربری‌های اراضی کشاورزی، باغات و مسکونی قرار دارد. بنابراین، تغییرات کاربری‌های مختلف در منطقه به تغییر در روندهای مورفولوژیک انجام‌دهنده است. برای مثال، تغییرات در کاربری‌های مراتع و تبدیل آن به باغات یا اراضی کشاورزی به تغییر در سیستم فرسایش منطقه منجر شده‌است. با توجه به اینکه مراحل در مقابل فرسایش منطقه نقش حفاظتی دارد، هرگونه تغییر در میزان پوشش گیاهی و افزایش دخالت‌های انسانی (ساخت و ساز و تغییر در شرایط طبیعی زمین از جمله بخش زند) به افزایش میزان فرسایش و رسوب منطقه منجر خواهد شد (Asghari et al., 2019). به علاوه، جایگاهی تغییر ساخت کاربری‌های مرطوب به ویژه در مناطق پرشین کوهستانی علاوه بر فرسایش خاک با جاری شدن سیل منجر خواهد شد و کیفیت پویای خاک را تحت تأثیر قرار خواهد داد. همچنین با مطالعه‌های میدانی و بررسی نقش‌های موجود در این مکان‌ها که افزایش مساحت کاربری مسکونی، با کاهش مساحت کاربری‌های بایر و باغات کم تراکم همراه بوده‌است. این امر تأثیر ساخت و سازی‌های مسکونی را بر کاربری‌های بایر و باغات کم تراکم نشان می‌دهد که تغییرات باغات کم تراکم را به همراه داشته و پس از آن با دخالت انسان در محیط (مانند ایجاد ترازه برای جاده‌سازی و عدم رعایت اصول مکانیک خاک در این مناطق مسکونی و ابیه‌های فنی و...)، میزان پاناسیل فرسایش خاک افزایش می‌یابد. این نوع موارد علاوه بر اینکه می‌توانند تغییرات سیاسی زبان در روندهای مورفولوژیک منطقه ایجاد کنند، به افزایش تمرکز جریان‌ها افزایش میزان فرسایش ناشی از تجمع جریان، کاهش نفوذ و کاهش میزان تغییر سطح سفره‌های زیرزمینی نیز منجر می‌شود. همچنین این نتایج با یافته‌های (Toriman و Hessipour در حوزه آبخیز دارابکلا استان مازندران، و همکاران (2015) در مالزی - که بیان کردن اراضی با کاربری جنگلی و پوشش گیاهی کم شرایط میزان فرسایش و روان‌های را رد و کاربری کشاورزی و دیگر این تغییرات پوشش گیاهی خاک را متناسب و مراقبت دارد. (Trapathidk et al., 2011). اطلاع از نسبت کاربری‌ها و نحوه تغییرات آن در گذشته زمین، یکی از مهم‌ترین موارد در برنامه‌ریزی و سیاست‌گذاری است. فرسایش خاک یک مشکل جهانی است که تغییرات آن برای مبانی آب و خاک تهدیدی جدی به شمار می‌رود. تغییرات کاربری‌های اراضی نیز یکی از مهم‌ترین مسائل اخیر جهان است که تغییرات سیاسی زبان در سیستم‌های سطح زمین منجر شده‌است. این تغییرات می‌توانند تأثیر بسیار زیاد و بلندمدتی به همراه داشته باشد؛ از این رو، منجر کاربری‌های اراضی یکی از عوامل مهم در شکل‌دهی می‌باشد (2011). آبیک‌های آق‌لوکانچی و سال‌های 1990 و 2008 و تحقیقات آن در فرسایش خاک پرده‌ریزید. بسیاری از مناظر طبیعه- بندی کاربری اراضی از روش‌های گرا استفاده شد. بررسی‌ها نشان داد که پاکیزگی تغییرات کاربری با استفاده از روش‌های گرا، در صورت رعایت کردن تمامی پارامترها تأثیر مناسبی در کاهش پیچیده اراضی می‌دهد. همچنین نتایج تمامی مطالعات این حوزه پایگاه برتری کاملاً آشکار تکنیک‌های شی‌گرا به پیکسل پایه Feizizadeh و همکاران (2008) و Feizizadeh و همکاران (2009) است. این تحقیق با نتایج تحقیقات محکم‌سازی همچون Ackay و همکاران (2009) و Yamagochi، (2008) می‌باشد و به نظر می‌رسد که روش‌های...
می‌توان گفت تاکنون این مطالعه با نتایج مطالعات Khaledian و همکاران (2014) و Esfandiari و همکاران (2016) و همکاران (2011) و DaSilva و Martínez (2017) دیم، بیشترین فراسایش را دارد و مراتع کمترین پتانسی برای ایجاد فراسایش، مفاهیم‌دانی مراتع. همچنین نتایج مطالعه نشان داد که مساحت طبقه‌بندی پرخطر در سال 1990، 2000 و 2018 به ترتیب 120/2 و 120/2 و 120/2 درصد بوده که نشان می‌دهد در گذر زمان افزایش یافته‌است. کاهش میزان مراتع در سال‌های مورد بررسی می‌تواند تغییرات بیماری زیادی در میزان فراسایش و رسوب ایجاد کند. با توجه به اینکه مراتع در مقابل فراسایش نقش حفاظتی دارد، از بین رفتن پوشش گیاهی طبیعی به کاهش مقاومت خاک، افزایش میزان فراسایش و بهبود آن موجب مجزای خواهد شد. با توجه به نتایج محققین دیگر، برای تبدیل اراضی مرتعی به اراضی دیم و زمین‌های کشاورزی، شستشو و تولید رواناب در اراضی شهری دار است. با ایجاد فراسایش بسیار وسیع می‌انجامد. همچنین که گروه وسیع از محققان نیز بر این امر تأکید کرده‌اند. همیشه تغییرات کاربری اراضی، تغییرات بیماری زیادی در میزان تغذیه‌پذیری خاک، کاهش تغذیه‌پذیری آب‌های زیرزمینی و اثرات هیدرولوژیکی در برابر این مرتعی داده‌اند. از جمله این تغییرات، تبدیل مرتع به مناطق مسکونی و انسان‌ساخت است. که بیشترین میزان تأثیر را در این مورد خواهد داشت. بنابراین با توجه به نتایج Mehandoust و همکاران (2017) در توسعه فراسایش خاک منجر می‌شود که این امر کاهش کنتراست و افزایش حساسیت در، نتایج تا به حال داشته که این را به خطیب‌پرخطر رو پرخطر در سال‌های (1990، 2000 و 2018) به ترتیب 20/3 و 20/3 و 20/3 که همانند طبقات بسیار پرخطر رو به افزایش می‌باشد و علت این امر، افزایش مساحت راه‌پیمایشی است. بنابراین، می‌توان تیزی‌بیشتر افراد و همکاران (2011) یکسان به نتیجه‌گیری‌های DaSilva و Martínez (2017) بوده است. آنها ترجیح مطالعه‌ها به مناطق مسکونی در این دوره افزایش تأکید دارند. به نظر میرسد لازم است هنگام اراضی برای حفظ عرصه‌های طبیعی، تغییر که افرادی که کنترل اراضی اراضی، کنترل فراسایش و حفاظت‌شکل‌ها و آب از مناطق با پتانسی‌ل فراسایش بالا، اقداماتی را در پیتچ طرح‌های حفاظتی در دستور کار خود قرار دهند.
6 - یاسیت گزاری
نویسنده‌گان برخود و واجب می‌دانند از کمک‌هایی که دریغ سرکار خدامی پی‌پروری در روند این پژوهش، تشکر و
قدرتانی کندند و برای ایشان در تمامی عرصه‌های زندگی آزمایی موفقیت و بهره‌وری دارند.

منابع
 hierarchical segmentation. IEEE Transactions on Geoscience and Remote Sensing. 46 (7), 2097-
 2111.
 Land Use Changes Using Basic and Object Oriented Pixel Methods and Analysis of Land Use
 Impacts on Soil Erosion (Case Study: Maragheh City), Quantitative Geomorphological
 Researches, Eighth Year, 1, 178-160. (in Persian)
different soil databases on modeling of hydrological processes and sediment yield in Benin
(West Africa), Geoderma, 174, 61-74.
 sediment yield: A case study of the submiddle of the SAO Francisco River Basin, Soil and
 Water Engineering, 36 (6), 105-115.
 Erosion and Sedimentation in Latian Watershed. Iranian Journal of Natural Resources. 50 (1),
 49-58. (in Persian)
 Vegetation on the Forms of Sediment Frequency (Study Study of Qazvin RudasanWatershed).
 Geographical Journal of the Land. 11 (42), 62-51. (in Persian)
7. Feizadzade, B., 2017. Modeling Land Use Changes and Its Impacts on Fields Only by GIS
 and Gis Techniques. Journal of Hydrology. 11, 21-38. (in Persian)
 and Influential Parameters in Landscaping / Land Use Classification of West Azerbaijan
 Province. Natural Geography Research. 42 (71), 73-84. (in Persian)
 and Influential Parameters in 84 Land Use Classifications of West Azerbaijan Province,
 Journal of Geographical Research, 7-16. (in Persian)
 Data in Detecting Urban Land Use Changes Case Study of Tabriz Green Space, Journal of
 Fine Arts, 17-24. (in Persian)
 RUSLE Model (StudyCase Study: Darabkt Watershed, Mazandaran, Iran. Master of Watershed
 Management, Faculty of Natural Resources, University of Agricultural Sciences, And Sari
 Natural Resources, 103-118. (in Persian)
12. karam, A.; Safriyan, A.; & Sh, 1389. The pilgrimage pilgrimage. Estimation and Zoning
 of Soil Erosion in the Mamelu BasinTehran) using the modified equation of the worldSoil
 Erosion and Analytical Hierarchy Process, Journal, Earth Knowledge Research, 73-86 (in
 Persian).
 Erosion and Sediment Potential Using Linear Planning Model (Case Study: Chandelier Area of
 Sanandaj). Journal of Soil Science (Agricultural Science and Techniques and Natural
 Resources). 95-111.(in Persian)
18. Martínez-Murillo, M J. F. ; Lopez Vicente, M.; Poesen, J.; & J. D. Ruiz Sinoga, 2011. Modelling the effects of land use changes on runoff and soil Erosion in two Mediterranean catchments with active gullies (South of Spain), Landform Analysis, 17(1), 99-104.
studying the effects of land use on soil Erosion with WLC algorithm. Case of study: Agh Laghan Chay basin

Sayyad Asghari Sarasekanrood1: Associate Professor, Department of Geomorphology, University of Mohaghegh Ardabili, Ardabil, Iran.
Mehdi Faal Naziri: Masters Student Remote Sensing, GIS, University of Mohaghegh Ardabili, Ardabil, Iran.
Ali Asghar Ardeshirpy: Masters Student Remote Sensing, GIS, University of Mohaghegh Ardabili, Ardabil, Iran.

Article History (Received: 2019/11/5 Accepted: 2019/12/23)

Extended abstract

1- Introduction

Land use includes all types of land uses to meet different human needs. In other words, land use refers to the type of human use of land, and this type of use is related to the value of the land and (its) natural characteristics. To understand and identify, land use changes using satellite data to provide a broad and integrated view of an area, reproducibility, easy access, high accuracy of data obtained and high analytical speed, as well as performing the classification process a suitable way to map land use. It is particularly widespread in geographical areas. These changes include changes in the hydrological system, effects on erosion, changes in soil physical and chemical properties, and vast changes in land surface morphology, so studying land use changes is one of the necessities. (The) rain study is the cognition of the face of the earth. Identifying timely and precise land use changes is the basis for a better understanding of the relationships and interactions between humans and land resources. Soil erosion is one of the most important soil (in)fertility factors that nowadays is increasing because of poultry manure loss.

2- Methodology

The data needed in this method include topographic maps, land use, hydrological basin, soil, digital elevation model, slope of the area, as the input to the required model. Soil information is one of the most basic data needed for soil erodibility. WLC model requires soil map to scale with different soil physico-chemical properties such as soil texture, soil moisture percentage, hydraulic conductivity, bulk density. 1: 40,000 was prepared and used by Ardebil Province Natural Resources Department. Digital elevation map was prepared using 1: 25000 topographic map of the study area. In this research, using the topographic map of 1: 25000 scale and digital elevation modeling, the slope map of Agh Laghan Chay Watershed was prepared. The lithology map of the study area was prepared using the 1: 100,000 Geological Survey of Iran Geological Survey. In addition, the standardization-criticalization and weighing methods have been used.

3- Results

The results show that in 1990 the overall accuracy was 95\% and the kappa coefficient was 0.93, in 2000 the overall accuracy was 90\% and the kappa coefficient was 0.97 and in 2018 the overall accuracy was 93\% and the kappa coefficient was 0.91. During the years (1990-2000-2018), significant changes are noticeable, most notably the rangelands and the waste land,

1 Corresponding Author: Sayyad.sasghari21@gmail.com
which, due to intensive exploitation, gradually shifts its land to other uses such as residential and agricultural areas, dry land, that have been assigned. Increased area of land use and cropland and agricultural areas in 2000 and 2018, compared to 1990, indicate the degradation of rangelands and the reduction of waste land, which will cause significant changes in the morphological systems of the region, mainly to increase the rate erosion and sedimentation in watersheds, reduction of groundwater recharge, destructive floods and other morphological processes will be due to erosion zoning maps in the study area that in 1990 was very high risk area of 1758/82 hectares. This class of danger per year 2000 and 2018, respectively 08/1912 and 25/1914 hectare is increased and the high class area in 1990, 59/4018, 78/4219 and 31/4481 to ha respectively in 2000 and 2018 is increased. In the erosion map of the years 1990-2000-2018, mainly high-risk and high-risk areas are located in agricultural, orchard and residential land uses; therefore, different land use changes in the area have caused changes in the morphological trends of the area.

4- Discussion & Conclusions

Knowing the ratios of land uses and how they change over time is one of the most important issues in planning and policy making. Soil erosion is a global problem that threatens land-use such as changes in water resources. Land use changes are one of the most important issues in the recent world which causes many changes in land surface systems, including geomorphic systems. Land use is one of the most important factors in soil erosion. The results show more accuracy of object-oriented classification. Studies also show that monitoring land use changes using object-oriented methods yields better results when observing all parameters. In the study of land use changes over the years 1990–2012, the results showed that there were major changes in this period of time and It is related to dense rangelands that, due to intensive exploitation, have gradually devoted their land to other uses, such as residential and agricultural areas, and land use, and wasteland has declined over time and has become land and agricultural land. According to soil erosion zoning maps in the study area of Agh Laghan Chay, In the years (1990-2000-2018), mainly high risk and high risk areas are in land use, agricultural, orchard, vegetation and high risk areas. Comfy and very comfy are located in rangelands and man-made areas. The results also showed that the area of high risk class in the years (1990 - 2000 - 2018) was 11.20, 12.20 and 12.22%, respectively, and the area of high risk class in the years (1990-2000-2018), respectively. The order is 25.59, 26.65 and 28.29, which is increasing like many high-risk classes, due to the increase in residential area. It seems necessary to preserve natural areas, stabilize and legalize land use, erosion control and soil and water conservation practices in the context of high erosion potentials, within the framework of other conservation schemes. Get it. Civilians and governmental and non-governmental organizations in the region can manage and monitor land use changes.

Key Words: Object Oriented Classification - Land Use - Landsat Pictures - Soil Erosion - Ag Laghan Chay.