سال 14، شماره 1 - ( بهار 1403 )                   جلد 14 شماره 1 صفحات 203-178 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه بیرجند، بیرجند، ایران ، aminmoslemzadeh@yahoo.com
چکیده:   (490 مشاهده)
فرونشست زمین، به عنوان یکی از مخاطرات محیطی، در بسیاری از کشورهای جهان در حال وقوع و رخ دادن است. این پدیده در صورت عدم مدیریت صحیح، می‌تواند خسارت جبران‌ ناپذیر مالی و جانی ایجاد نماید. لذا، به دلیل اهمیت موضوع، این‌‌‌ پژوهش با هدف ارزیابی فرونشست زمین طی سال‌های 1396 تا 1400 در شمال آبخوان کاشمر  به عنوان بخشی از حوضه آبریز ایران مرکزی و با مساحتی در حدود 6340 هکتار انجام شد. جهت پایش تغییرات روند فرونشست زمین از تداخل‌سنجی راداری استفاده شد. ارزیابی خشکسالی آب زیرزمینی با استفاده از شاخص PSI و روند تغییرات خشکسالی با استفاده از آزمون‌های تحلیل سری زمانی من-کندال و پتیت به دست آمد. همچنین جهت محاسبه تراکم چاه‌ها (17 حلقه چاه) از تابع تراکم کرنل و برای بررسی همبستگی مکانی-زمانی شاخص‌ خشکسالی آب زیرزمینی و میزان تغییرات فرونشست زمین از روش آماری-تحلیلی استفاده ‌‌شد. نتایج بررسی تداخل سنجی راداری نشان داد که در مناطق مختلف شمال آبخوان کاشمر  و در بازه زمانیسال‌های 1396 تا 1400، به میزان 46 تا 84 سانتیمتر فرونشست به وقوع پیوسته است. بررسی خشکسالی آب زیرزمینی نیز با استفاده از سری زمانی شاخص خشکسالی PSI نشان داد که تغییرات ناگهانی شاخص آب زیرزمینی PSI در چاه کلاته رحیم و خلیل آباد در سطح احتمال 5 درصد غیرمعنی‌دار و در مابقی چاه‌های آبخوان معنی‌دار بوده است. بررسی روند همبستگی بین شاخص PSI  و فرونشست زمین نشان دهنده ارتباط معنادار بین دو شاخص است. علاوه برآن، بررسی تراکم چاه‌ها نشان داد که بیشترین تراکم چاه در بخش‌های مرکزی و غربی شمال آبخوان کاشمر  بوده که مربوط به اراضی زراعی است و یکی از دلایل مهم فرونشست زمین در بخش‌های مرکزی و غربی آبخوان، مربوط به تراکم چاه‌ها و برداشت بی‌رویه از سفره آب زیرزمینی می‌باشد.  
 
متن کامل [PDF 1543 kb]   (84 دریافت)    

فهرست منابع
1. Akbari, M., Ownegh, M., Asgari, H., Sadoddin, A., & Khosravi, H. )2016(. Drought Monitoring Based on the SPI and RDI Indices under Climate Change Scenarios (Case Study: Semi-Arid Areas of West Golestan Province). ECOPERSIA, 4(4), 1585-1602. http://ecopersia.modares.ac.ir/article-24-7974-en.html. [DOI:10.18869/modares.ecopersia.4.4.1585]
2. Akbari, M., Neamatollahi, E., & Neamatollahi, P. (2019). Evaluating land suitability for spatial planning in arid regions of eastern Iran using fuzzy logic and multi-criteria analysis, Ecological Indicators, 98, 587-598. [DOI:10.1016/j.ecolind.2018.11.035]
3. Akbari, M., Neamatollahi, E., Memarian, H., & Alizadeh Noughani, M. (2023). Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran. Natural Hazards, 117, 1689-1710. [DOI:10.1007/s11069-023-05925-y]
4. Anderssohn, J., & Wetzel, H. (2008). Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: Results from InSAR and levelling. Geophysical Journal International, 174 (1), 287-294, [DOI:10.1111/j.1365-246X.2008.03805.x]
5. Bureau of Basic Studies of Water Resources. (2021). Floods of Khorasan Razavi 1995-2020. Regional Water Company of Khorasan Razavi. First edition. https://www.khrw.ir/?l=EN
6. Behrouzi, A., Nazem Al Sadat, S.M., & Pishvaei, M. (2023). Evaluating the trend of rainfall changes in the long-term time series of Shiraz. JOURNAL OF DROUGHT AND CLIMATE CHANGE RESEARCH, 1(1), 19-32. https://sid.ir/paper/1051127/en. (In Persian)
7. Bayat Varkeshi, M., Farahani Dastjani, M., & Ghabaei Sough, H.M. (2018). EFFECT OF METEOROLOGICAL DROUGHT ON GROUNDWATER RESOURCES (CASE STUDY: KOMIJAN AQUIFER IN MARKAZI PROVINCE). IRAN-WATER RESOURCES RESEARCH, 14(1), 114-124. https://sid.ir/paper/100311/en. (In Persian)
8. Bozzano, F., Esposito, C., Franchi, S., Mazzanti, P., Perissin, D., & Rocca, A. (2015). Understanding the subsidence process of a quaternary plain by combining geological and hydrogeological modelling with satellite InSAR data: the acque albule plain case study. Remote Sensing of Environment, 168, 219-238. [DOI:10.1016/j.rse.2015.07.010]
9. Bureau of Basic Studies of Water Resources. (2013). report on the extension of the ban on the study area of Kashmar Plain, Khorasan Razavi Regional Water Company. https://www.khrw.ir/uploaded_files/DCMS/
10. Chatrsimab, Z., Alesheikh, A., & Vosoghi, B.M. (2018). Surveying subsurface abandonment due to groundwater irregular removal using radar interferometry technique, Marvdasht Aquifer. Journal of Watershed Engineering and Management, 114-125. [DOI:10.22092/ijwmse.2018.116621.1400]
11. Chen. C., Wang. C., & Chen Kuo, L. (2010). Correlation between groundwater level and variations in land subsidence area of the Choshuichi Alluvial Fan. Taiwan. Engineering Geology, 115(2), 122-131. [DOI:10.1016/j.enggeo.2010.05.011]
12. Childs, C. (2004). Interpolating Surfaces in ArcGIS Spatial Analyst. ArcUser, July-September, 32-35.
13. Chit Sazan, M., Mirzae, S.Y., Mohammadi, B., & Shaban, M. (2009). The effect of drought on the quantity and quality of underground water resources (a case study of Khois Plain in North Khuzestan). National conference on the effects of drought and its management solutions, 2, 551-558. https://sid.ir/paper/464944/fa. (In Persian)
14. Erler, A.R., Frey, S.K., Khader, O., d'Orgeville, M., Park, Y.J., Hwang, H.T., & Sudicky, E.A. (2019). Evaluating Climate Change Impacts on Soil Moisture and Groundwater Resources within a Lake‐Affected Region. Water Resources Research, 55(10), 8142-8163.‏‏ [DOI:10.1029/2018WR023822]
15. Gabriel, A.K., Goldstein, R.M., & Zebker, H.A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(7), 9183-9191. [DOI:10.1029/JB094iB07p09183]
16. Guo, L. (2014). Evaluation of PS-DInSAR technology for subsidence monitoring caused by repeated mining in mountainous area. Transactions of Nonferrous Metals Society of China, 24(10), 3309-3315. [DOI:10.1016/S1003-6326(14)63471-3]
17. Hamed, K.H., & Rao, A.R. (1998) A Modified Mann-Kendall Trend Test for Autocorrelated. Journal of Hydrology, 204, 182-196. -X [DOI:10.1016/S0022-1694(97)00125]
18. Hosseinzadeh, S.R., Akbari, E., Javanshiri, M., & Mohammadpour, Z. (2023). Spatial Analysis of Ground Subsidence using Radar Interferometry (Case Study: Central Plain of Ghaen City). Journal of Geography and Environmental Hazards, 11(4), 99-126. [DOI:10.22067/geoeh.2022.75138.1169 (in Persian)]
19. Https://www.unwater.org/publications/un-world-water-development-report-2021
20. Intergovernmental Panel on Climate Change (IPCC). (2021). AR6 Climate Change 2021: The Physical Science Basis, https://www.ipcc.ch/report/ar6/wg1/.
21. Lashkaripour, G., Ghafouri, M., & Rostami Barani, H. (2008). Investigating the causes of cracks and land subsidence in the west of Kashmir plain. Geological Studies, 1(1), 95-111. https://sid.ir/paper/467853/fa. (in Persian)
22. Lashgaripour, G., Ghafouri, M., Swayzi, Z., & Takhni, Z. (2006). Groundwater level drop and ground subsidence in Mashhad plain. Conference of Geological Associations of Iran. https://sid.ir/paper/805058/fa. (In Persian)
23. Mitchell, A. (2005). The ESRI Guide to GIS Volume 2: Spatial Measurements & Statistics.
24. Mohebbi Tafreshi, M., & Nakhaei, R. (20210) Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. Geo journal, 86, 1203-1223. [DOI:10.1007/s10708-019-10129-8]
25. Memarian Khalilabad, H., Azadi Shibkooh, S., Pourreza Beilandi, M., Abedinpour, M., & Akbari, M. (2020). Evaluation of temporal-spatial changes of groundwater resources in Kashmar plain based on time series analysis of precipitation and drought data. JOURNAL OF RAINWATER CATCHMENT SYSTEMS, 8(24), 55-69. https://sid.ir/paper/961650/en. (In Persian)
26. Memarian, H., Abdi Bastami, S., Akbari, M., Tajbakhsh, S.M., & Azamirad, M. (2023). An integrative approach of the physical-based stability index mapping with the maximum entropy stochastic model for risk analysis of mass movements. Environment, Development and Sustainability, 25, 2808-2830. [DOI:10.1007/s10668-022-02165-1]
27. Memarian Khalilabad, H., Balasundram, S.K., Talib, J.B., Sood, A.M., & Abbaspour, K.C. (2012). Trend analysis of water discharge and sediment load during the past three decades of development in the Langat basin, Malaysia. Hydrological Sciences Journal, 57(6), 1207-1222. [DOI:10.1080/02626667.2012.695073]
28. Moslemzadeh, A., Memarian Khalilabad, H., Tajbakhsh, S.M., & Akbari, M. (2021). Land Subsidence Assessment in Kashmar Plain Using the Sentinel-1Radar Interferometry techniques. 2nd International Conference on Geographic Information Science of Interdisciplinary Foundations and Applications, Mashhad. https://civilica.com/doc/1383892l, 57(6), 1207-1222.
29. Mohammadi, S., Naseri, F., & Nazariour, H. (2018). Investigating the temporal variation and meteorological drought effect on groundwater resources in Kerman plain using SPI and GRI indices. IRANIAN JOURNAL OF ECOHYDROLOGY, 5(1), 11-22. https://sid.ir/paper/253985/en. (In Persian)
30. Nabavi, M, 1976. "Introductory book on the geology of Iran", Publisher: Geological Organization of the country, (1976) edition. Iranian Fisheries Research Organization. (In Persian)
31. Nasrian, A., Akbari, M., Faridhosseini, A., Neamatollahi, E., & davari, S. (2019). Quantitative Assessment of Desertification Intensity Indices in the Agricultural Lands of Dargaz Plain, Khorasan Razavi Province. Desert Management, 7(13), 149-170. [DOI:10.22034/jdmal.2019.36537]
32. Nourmohamadi, S., Tajbakhsh, S.M., & Memarian, H. (2017). A Study on the Impact of Climatic Factors on Groundwater Resources Using Spatio-Temporal Analysis of Statistical Time Series (Case Study: Mashhad Plain, Kasahfroud Basin). Journal of Geography and Environmental Hazards, 6(1), 19-44. [DOI:10.22067/geo. v6i3.60760 (In Persian)]
33. National Cartographic Center. 2019. Atlas and maps of land subsidence. https://en.ncc.gov.ir
34. Nur Khakim, M., Tsuji, T., & Toshifumi, M. (2014). Lithology-controlled subsidence and seasonal aquifer response in the Bandung basin, Indonesia, observed by synthetic aperture radar interferometry. International journal of applied earth observation and geoinformation, 199-207. [DOI:10.1016/j.jag.2014.04.012]
35. Rucci, A., Ferretti, A.M., & Rocca, F. (2012). "Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements," Remote Sensing of Environment, 120, 156-163, https://doi.org/10.1016/j.rse.2011.09.030 [DOI:10.1016/j.rse.2011.09.030.]
36. Sabaghian Javidi, R., & Sharifi, M. (2009). The use of stochastic models in the simulation of river flow and forecasting the average annual flow of the river by analyzing time series. Iran Water Resources Management Conference, 1(1), 95-111. https://sid.ir/paper/489064/fa. (In Persian)
37. Sáenz, M.C., Montoya, F.F., & De Mingo, R.G. (2009). The role of groundwater during drought. In Coping with Drought Risk in Agriculture and Water Supply Systems (221-241). Springer, Dordrecht. [DOI:10.1007/978-1-4020-9045-5_15]
38. Seydai, E., Jahangir, E., Darabkhani, R., & Panahi, A. (2020). Recognizing the Eventful points of the axes of Alborz province using the kernel density method. HUMAN GEOGRAPHY RESEARCH QUARTERLY, 52(3), 939-951. https://sid.ir/paper/370398/en. (In Persian)
39. Shafiei, N., Golimokhtari, L., Amirahmadi, A., & Zandi, R. (2020). Investigation of subsidence of Noorabad plain aquifer using radar interferometry method. QUANTITATIVE GEOMORPHOLOGICAL RESEARCHES, 8(4), 93-111. https://sid.ir/paper/377960/en. (In Persian)
40. Sobhani, M., Memarian, H., & Tajbakhsh, S.M. (2015). Investigating the influencing factors on the sedimentation process of Bar Neyshabur using time series analysis. Iran hydraulic conference. https://sid.ir/paper/863650/fa. (In Persian)
41. Torabi poudeh, H., & Dehghani, R. (2019). Assessment Mann-Kendall and Spearman Test Nonparametric in Trends of Groundwater Quality (Case Study: Mazandaran Plain). GEOGRAPHIC SPACE, 18(64), 201-214. https://sid.ir/paper/91440/en. (In Persian)
42. World Bank. 2005. Cost Assessment of Environmental Degradation, Islamic Republic of Iran. Report No. 32043-IR, Washington, DC.
43. Yousefi, A., Nasiri, B., Karampour, M., & Malekian, A. (2017). Investigating the effect of climate change on changes in the groundwater level of dry areas, a case study: Bagh Desert. Natural Geography, 11(42), 97-112. https://sid.ir/paper/515385/fa. (In Persian)
44. Zafor, M., Alam, M., Bin, J., Rahman, M., Amin, M.N., Zafor, M.A., & Amin, M.N. (2017). The analysis of groundwater table variations in Sylhet region, Bangladesh. Environmental Engineering Research, 22(4), 369-376. [DOI:10.4491/eer.2016.152]
45. Zare Abyaneh, H., Bayat Varkeshi, M., & Bayat Varkeshi, J. (2012). APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN THE EVALUATION OF EKBATAN WASTEWATER TREATMENT PLANT. JOURNAL OF ENVIRONMENTAL STUDIES, 38(63), 22-24. https://sid.ir/paper/401837/en. (In Persian)
46. Zandi, R., Farzin Kia, R., & Shafiei, N. (2019). Radar interferometry. 2nd edition. Satellite publications. Book of ground subsidence and radar interferometer. 1st edition. Geography and geology books. 82-129. (In Persian)

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.