1. Aldiansyah, S. & Wardani, F. (2023). Evaluation of flood susceptibility prediction based on a resampling method using machine learning. Journal of Water and Climate Change, 14(3), 937-961. [
DOI:10.2166/wcc.2023.494]
2. Breiman, L., HFriedman, J., Olshen, R.A. & Stone, C.J. (1984). Classification and regression trees. Chapman & Hall, New York.
3. Bui, D.T., Tsangaratos, P., Ngo P-TT., Thai Pham, T. & Thai Phamet, B. (2019). Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci Total Environ, 668,1038-1054. [
DOI:10.1016/j.scitotenv.2019.02.422]
4. Cheraghi Ghalehsari, A., Habibnejad Roshan, M. & Roshun, S. H. (2020). Flood Susceptibility Mapping Using a Support Vector Machine Models (SVM) and Geographic Information System (GIS). Journal of Natural Environmental Hazards, 9(25), 61-80. (In Persian). doi: 10.22111/jneh.2020.31018.1547
5. Chezgi, J., Poyan, S. (2024). Determining Flood-Prone Areas Using Machine Learning Models in the Shahrestank Watershed Area of Khosef City. Jwmseir, 17 (63). 38-50.
6. Costache, R., Popa, M.C., Tien Bui, D., Diaconu, D.C., Ciubotaru, N., Minea, G., Pham, QB. (2020). Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning. Journal of Hydrology, 585:124808. https:// doi. org/ 10. 1016/j. jhydr ol. 2020. 124808. [
DOI:10.1016/j.jhydrol.2020.124808]
7. Diakakis, M., Mavroulis, S. & Deligiannakis, G. (2012). Floods in Greece, a statistical and spatial approach. Nat. Hazards, 62, 485-500. https://doi. org/10.1007/s11069-012-0090-z [
DOI:10.1007/s11069-012-0090-z]
8. Gujarati, DN. (2004). Basic econometrics. 4th ed. New York City (NY), The MacGraw Hill Company, p. 1002.
9. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816. [
DOI:10.1038/nclimate1911]
10. Hitouri, S., Mohajane, M., Lahsaini, M., Ali, S.A., Setargie, T.A., Tripathi, G., D'Antonio, P., Singh, S.K., Varasano, A. (2024). Flood Susceptibility Mapping Using SAR Data and Machine Learning Algorithms in a Small Watershed in Northwestern Morocco. Remote Sens, 16, 858, 1-21. [
DOI:10.3390/rs16050858]
11. Hudson, P., Botzen, W.J.W., Kreibich, H., Bubeck, P. & Aerts, J.C.J.H. (2014). Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching. Nat. Hazards Earth Syst. Sci, 14, 1731-1747. [
DOI:10.5194/nhess-14-1731-2014]
12. Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.
13. Karami, P., Eslamnezhad, S. A., Eftekhari, M., Akbari, M., & Rastgoo, M. (2023). Flood susceptibility zoning using machine learning improved by genetic algorithm. Journal of Natural Environment, 76(1), 43-60. doi: 10.22059/jne.2022.350170.2485
14. Kazemi, H., Mansouri, N., Jozi, S.A. (2021). Flood risk zoning in Nowshahr city using machine learning models. JHRE. 40(176), 71-86.
15. Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S.D., Saco, P.M., Bui, D.T., Lee, S. (2020). Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J. Hydrol, 591. [
DOI:10.1016/j.jhydrol.2020.125552]
16. Khosravi, K., Shahabi, H., Thai Pham, B., Adamowski, , J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H., Gróf, G., Loc Ho, H., Hong, H., Chapi, K. & Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 573, 311-323. doi: 10.1016/j.jhydrol.2019.03.073 [
DOI:10.1016/j.jhydrol.2019.03.073]
17. Kotsianti, S.B. & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. In: Apolloni, B., Howlett, R.J., Jain, L. (Eds.), KnowledgeBased Intelligent Information and Engineering Systems. Springer, Berlin Heidelberg, Berlin, Heidelberg, 493-500. [
DOI:10.1007/978-3-540-74827-4_62]
18. Kourgialas, N.N. & Karatzas, G.P. (2011). Flood management and a GIS modelling method to assess flood- hazard areas-a case study. Hydrological Sciences Journal, 56(2), 212-225. doi: [
DOI:10.1080/02626667.2011.555836]
19. Lee, G., Jun, K. & Chung, E. (2013). Integrated multi-criteria flood vulnerability approach using fuzzy Atmospheric TOPSIS and Delphi technique. Nat. Hazards Earth Syst. Sci, 13, 1293-1312. [
DOI:10.5194/nhess-13-1293-2013]
20. Lieb, M., Glaser, B. & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma, 170, 70-79. [
DOI:10.1016/j.geoderma.2011.10.010]
21. Luu, C., Thai Pham, B., Van Phong, T., Costache, R., Duy Nguyen, H., Amiri, M., Duy Bui, Q., Thanh Nguyen, L., Van Le, H., Prakash, I. & Trong Trinh, P. (2021). GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam, Journal of Hydrology, 599, 126500.
https://doi.org/10.1016/j.jhydrol.2021.126500 [
DOI:10.1016/j.jhydrol.2021.12650.]
22. Ozcift, A. (2012). SVM feature selection based rotation forest ensemble classifiers to improve computer aided diagnosis of Parkinson disease. J. Med. Syst, 36(4), 2141-2147. [
DOI:10.1007/s10916-011-9678-1]
23. Paryani, S., Bordbar, M., Jun,C., Panahi, M., M. Bateni, S., M. U. Neale, C., Moeini, H. & Lee, S. (2022). Hybrid based approaches for the flood susceptibility prediction of Kermanshah province, Iran. Natural Hazards, 116(2), 1-32. [
DOI:10.1007/s11069-022-05701-4]
24. Peters, J., Verhoest, N., Samson, R., Boeckx, P. & De Baets, B. (2008). Wetland vegetation distribution modelling for the identification of constraining environmental variables. Landscape Ecology, 23, 1049- 1065. [
DOI:10.1007/s10980-008-9261-4]
25. Piao,Y., Piao, M., Hao, Jin, C., Sun, S-H., Chung, J-M., Hwang, B. & Ho, R. (2015). A New Ensemble Method with Feature Space Partitioning for High- Dimensional Data Classification, Hindawi Publishing Corporation Mathematical Problems in Engineering, 1-12. http://dx.doi.org/10.1155/2015/590678 [
DOI:10.1155/2015/590678]
26. Pradhan, B., Abokharima, M.H., Jebur, M.N. & Tehrany, M.S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019-1042. [
DOI:10.1007/s11069-014-1128-1]
27. Rahimpour, T., Rezaei Moghaddam, M. H., Hejazi, S. A. & Valizadeh Kamran, K. (2021). Spatial Variations Analysis of Flood hazard Susceptibility based on a new ensemble model (Case Study: Aland Chai Basin, Khoy city). Environmental Management Hazards, 8(4), 371-393. (In Persian). [
DOI:10.22059/jhsci.2022.335204.692]
28. Rahimpour, T., Rezaei Moghaddam, M. H., Hejazi, S. A. & Vlaizadeh Kamran, K. (2023). Flood Susceptibility Modeling in the Aland Chai Basin using New Ensemble Classification Approach (FURIA-GA-LogitBoost). Journal of Geography and Environmental Hazards, 12(1), 1-24. (In Persian). doi: 10.22067/geoeh.2022.74170.1141
29. Rahman, R., Dhruba, S.R., Ghosh, S. & Pal, R. (2019). Functional random forest with applications in dose-response predictions. Scientific reports, 9(1), 1-14. [
DOI:10.1038/s41598-018-38231-w]
30. Rezaei Moghaddam, M. H. & Rahimpour, T. (2024a). Preparation of flood hazard potential map using two methods: Frequency Ratio and Statistical Index (Case study: Aji Chai Basin). Environmental Management Hazards, 10(4), 291-308. (In Persian). doi: 10.22059/jhsci.2024.369163.803
31. Rezaei Moghaddam, M. H., & Rahimpour, T. (2024b). Evaluating of Flood hazard potential using bivariate statistical analysis method (Case study: Aji Chai basin). Quantitative Geomorphological Research, 12(4), 91-107. (In Persian). doi: 10.22034/gmpj.2024.429929.1473
32. Roy, J. & Saha, S. (2019). GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with fuzzy logic in Hinglo River basin, India. Remote Sensing Applications: Society and Environment, 15, 100247. [
DOI:10.1016/j.rsase.2019.100247]
33. Roy, J. & Saha, S. (2021). Integration of artificial intelligence with meta classifiers for the gully erosion susceptibility assessment in Hinglo river basin. Eastern India. Advances in Space Research, 67(1), 316-333. [
DOI:10.1016/j.asr.2020.10.013]
34. Roy, J. & Saha, S. (2022). Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K- fold cross validation approach. Artificial Intelligence in Geosciences, 3, 28-45. doi: [
DOI:10.1016/j.aiig.2022.07.001]
35. Sofia, G., Roder, G., Dalla Fontana, G. & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans' interaction. Sci. Rep, 7, 40527. [
DOI:10.1038/srep40527]
36. Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.T., Tran, Q.A. & Nguyen, Q.P. (2016). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317-330. [
DOI:10.1016/j.jhydrol.2016.06.027]
37. Towfiqul Islam, A.B., Talukdar, S., Mahato, S., Kundu, S., UddinEibek, K., BaoPham, Q., Kuriqi, A. & ThuyLinh, N.T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075. [
DOI:10.1016/j.gsf.2020.09.006]
38. Walia, S. & Kumar, K. (2019). Digital image forgery detection: a systematic scrutiny. Australian Journal of Forensic Sciences, 51(5), 488-526. [
DOI:10.1080/00450618.2018.1424241]
39. WHO (World Health Organization). (2022). Floods. 2017. Available online: https://www.who.int/health- topics/floods (accessed on 13 January 2022).
40. Zarei, M., Zandi, R. & Naemitabar, M. (2022). Assessment of Flood Occurrence Potential using Data Mining Models of Support Vector Machine, Chaid and Random Forest (Case study: Frizi watershed). J Watershed Manage Res, 13(25), 133-144. (In Persian). doi:10.52547/jwmr.13.25.133 [
DOI:10.52547/jwmr.13.25.133]
41. Zhao, C., Zhang, X., Zhang, B., Dang, Q. & Lian, J. (2013). Driver's fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles. IET Intelligent Transport Systems, 7(1), 36-45. [
DOI:10.1049/iet-its.2012.0005]