1. Abrahart, R.J., White, S.M., 2001. Modeling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets. Physics and Chemistry of the Earth B 26 (1), 19-24. [
DOI:10.1016/S1464-1909(01)85008-5]
2. Alp, M., Cigizoglu, H.K., 2007. Suspended sediment estimation by feed forward back propagation method using hydro meteorological data. Environmental Modelling & Software 22 (1), 2-13. [
DOI:10.1016/j.envsoft.2005.09.009]
3. Bou-Fakhreddine, B., Mougharbel, I., Faye, A., Abou Chakra, S., Pollet, Y., 2018. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry. J. Hydrol. 558, 255-265.
https://doi.org/10.1016/j.jhydrol.2018.01.035 [
DOI:10.1016/j.jhydrol.2018.01.035.]
4. Chiang, J.-L., Tsai, Y.-S., )2011(. Suspended sediment load estimate using support vector machines in Kaoping river basin, in: Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference On. pp. 1750-1753. [
DOI:10.1109/CECNET.2011.5769267]
5. Choubin, Bahram, Darabi, Hamid, Rahmati, Omid, Sajedi-Hosseini, Farzaneh, & Kløve, Bjørn. (2018). River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of The Total Environment, 615, 272-281. doi:
https://doi.org/10.1016/j.scitotenv.2017.09.293 [
DOI:10.1016/j.scitotenv.2017.09.293.]
6. Çimen, M., 2016. Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J. 6667.
7. Cobaner, M., Unal, B., Kisi, O., )2009(. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydrometeorological data. J. Hydrol. 367, 52-61. [
DOI:10.1016/j.jhydrol.2008.12.024]
8. Darabi, H., Mohamadi, S., Karimidastenaei, S., Kisi, S., Ehteram, M., ELShafie, A., Torabi Haghighi, A., 2021. Prediction of daily suspended sediment load (SSL) using new optimization algorithms and soft computing models. Soft Computing (2021) 25:7609-7626,
https://doi.org/10.1007/s00500-021-05721-5 [
DOI:10.1007/s00500-021-05721-5.]
9. Dawson, Christian W, Abrahart, Robert J, & See, Linda M. (2007). HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software, 22(7), 1034-1052. [
DOI:10.1016/j.envsoft.2006.06.008]
10. Diop, L., Bodian, A., Djaman, K., Yaseen, Z.M., Deo, R.C., El-shafie, A., Brown, L.C., )2018(. The influence of climatic inputs on stream-flow pattern forecasting: case study of Upper Senegal River. Environ. Earth Sci. 77, 182.
https://doi.org/10.1007/s12665-018-7376-8 [
DOI:10.1007/s12665-018-7376-8.]
11. Gholami, Hamid, Mohammadifar, Aliakbar, Golzari, Shahram, Kaskaoutis, Dimitris G, & Collins, Adrian L. (2021 b). Using the Boruta algorithm and deep learning models for mapping land susceptibility to atmospheric dust emissions in Iran. Aeolian Research, 50, 100682. [
DOI:10.1016/j.aeolia.2021.100682]
12. Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., H. Kashani, M., Mohammadi, B., 2017. Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor. Appl. Climatol. [
DOI:10.1007/s00704- 017-2244-0]
13. Haghighi AT, Darabi H, Shahedi K, Solaimani K, Kløve B (2019) A scenario-based approach for assessing the hydrological impacts of land use and climate change in the Marboreh Watershed. Iran. Environ Model Assess 25:1-17. [
DOI:10.1007/s10666-019-09665-x]
14. Hassanpour, F., et al., 2019. Development of the FCM-SVR hybrid model for estimating the suspended sediment load. KSCE Journal of Civil Engineering, 23 (6), 2514-2523. doi:10.1007/s12205-019-1693-7. [
DOI:10.1007/s12205-019-1693-7]
15. Hosseini, Majid, Ghafouri, A., Amin, M., Tabatabaei, Mohsen, Goodarzi, Massoud, & Abdeh Kolahchi, Abdolnabi. (2012). Effects of Land Use Changes on Water Balance in Taleghan Catchment, Iran. Journal of Agricultural Science and Technology, 14, 1159-1172.
16. Hothorn, T., Hornik, K., & Zeileis, A. (2015). ctree: Conditional inference trees. The comprehensive R archive network, 8, 1-34.
17. Houborg, R., & McCabe, M. F. (2018). A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 173-188. [
DOI:10.1016/j.isprsjprs.2017.10.004]
18. Idrees, M. B., Jehanzaib, M., Kim, D., Kim, T.D., 2021. Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir. Stochastic Environmental Research and Risk Assessment
https://doi.org/10.1007/s00477-021-01982-6 [
DOI:10.1007/s00477-021-01982-6(0123456789().,-volV)(0123456789,-().volV).]
19. Khan, A.I., Topping, B.H.V., Bahreininejad, A., 1993. Parallel training of neural networks for finite element mesh generation. In: Topping, B.H.V., Khan, A.I. (Eds.), Neural Networks and Combinatorial Optimization in Civil&Structural Engineering. Civil-Comp Press, Edinburgh, pp. 81-94. [
DOI:10.4203/ccp.16.5.1]
20. Khosravi, Khabat, Mao, Luca, Kisi, Ozgur, Yaseen, Zaher Mundher, & Shahid, Shamsuddin. (2018). Quantifying hourly suspended sediment load using data mining models: Case study of a glacierized Andean catchment in Chile. Journal of Hydrology, 567, 165-179. doi:
https://doi.org/10.1016/j.jhydrol.2018.10.015 [
DOI:10.1016/j.jhydrol.2018.10.015.]
21. Kisi, Ozgur, Dailr, Ali Hosseinzadeh, Cimen, Mesut, & Shiri, Jalal. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450-451, 48-58. doi:
https://doi.org/10.1016/j.jhydrol.2012.05.031 [
DOI:10.1016/j.jhydrol.2012.05.031.]
22. Lafdani, E Kakaei, Nia, A Moghaddam, & Ahmadi, A. (2013). Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478, 50-62. [
DOI:10.1016/j.jhydrol.2012.11.048]
23. Li, Y., Wang, Z., Han, R., Shi, S., Li, J., Shang, R., ... & Gu, Y. (2023). Quantum recurrent neural networks for sequential learning. Neural Networks, 166, 148-161. [
DOI:10.1016/j.neunet.2023.07.003]
24. Liu, Qian-Jin, Shi, Zhi-Hua, Fang, Nu-Fang, Zhu, Hua-De, & Ai, Lei. (2013). Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet-ANN approach. Geomorphology, 186, 181-190. doi:
https://doi.org/10.1016/j.geomorph.2013.01.012 [
DOI:10.1016/j.geomorph.2013.01.012.]
25. Lu H, Meng Y, Yan K, Gao Z (2019) Kernel principal component analysis combining rotation forest method for linearly inseparable data. Cogn Syst Res 53:111-122 [
DOI:10.1016/j.cogsys.2018.01.006]
26. Luo, Y., Xue, Y., Liu, W., Song, H., Huang, Y., Tang, G., ... & Sun, Z. (2022). Development of diagnostic algorithm using machine learning for distinguishing between active tuberculosis and latent tuberculosis infection. BMC Infectious Diseases, 22(1), 965. [
DOI:10.1186/s12879-022-07954-7]
27. Ma, J., Yu, Z., Qu, Y., Xu, J., & Cao, Y. (2020). Application of the XGBoost machine learning method in PM2. 5 prediction: a case study of Shanghai. Aerosol and Air Quality Research, 20(1), 128-138. [
DOI:10.4209/aaqr.2019.08.0408]
28. Masters, Timothy. (1993). Practical neural network recipes in C++: Morgan Kaufmann. [
DOI:10.1016/B978-0-08-051433-8.50017-3]
29. Mehri, Y., Nasrabadi, M., Omid, M.H., (2021). Prediction of suspended sediment distributions using data mining algorithms. Ain Shams Engineering Journal,
https://doi.org/10.1016/j.asej.2021.02.034 [
DOI:10.1016/j.asej.2021.02.034.]
30. Melesse, A. M., Ahmad, S., McClain, M. E., Wang, X., & Lim, Y. H. (2011). Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98(5), 855-866. doi:
https://doi.org/10.1016/j.agwat.2010.12.012 [
DOI:10.1016/j.agwat.2010.12.012.]
31. Melesse, A., Jayachandran, K., Zhang, K., 2008. Modeling coastal eutrophication at Florida Bay using neural networks. Journal of Coastal Research 24, 190-196. [
DOI:10.2112/06-0646.1]
32. MixSIR model. CATENA 164, 32-43.
33. Muthukrishnan, R., & Rohini, R. (2016, October). LASSO: A feature selection technique in predictive modeling for machine learning. In 2016 IEEE international conference on advances in computer applications (ICACA) (pp. 18-20). Ieee. [
DOI:10.1109/ICACA.2016.7887916]
34. Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S., Moghaddam, A.A., )2017(. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Sci. Total Environ. 574, 691-706.
https://doi.org/10.1016/j.scitotenv.2016.09.093 [
DOI:10.1016/j.scitotenv.2016.09.093.]
35. Nagy, H.M., Watanabe, K., Hirano, M., 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering 128 (6), 588-595. [
DOI:10.1061/(ASCE)0733-9429(2002)128:6(588)]
36. Noori, R., Sabahi, M.S., Karbassi, A.R., Baghvand, A., Taati Zadeh, H., 2010d. Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination 260, 129-136. [
DOI:10.1016/j.desal.2010.04.053]
37. Nosrati, K., Collins, A.L., Madankan, M., 2018a. Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified [
DOI:10.1016/j.catena.2018.01.003]
38. Nosrati, Kazem, Mohammadi-Raigani, Zeinab, Haddadchi, Arman, & Collins, Adrian L. (2021). Elucidating intra-storm variations in suspended sediment sources using a Bayesian fingerprinting approach. Journal of Hydrology, 596, 126115. doi:
https://doi.org/10.1016/j.jhydrol.2021.126115 [
DOI:10.1016/j.jhydrol.2021.126115.]
39. Pourghasemi, H.R., Yousefi, S., Kornejady, A., Cerda, A., (2017). Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci. Total Environ. 609, 764-775. [
DOI:10.1016/j.scitotenv.2017.07.198]
40. Rahul, Atul Kumar, Shivhare, Nikita, Kumar, Shashi, Dwivedi, Sumita, & Dikshit, P. K. S. (2021). Modelling of Daily Suspended Sediment Concentration Using FFBPNN and SVM Algorithms.
41. Raigani, Zeinab Mohammadi, Nosrati, Kazem, & Collins, Adrian L. (2019). Fingerprinting sub-basin spatial sediment sources in a large Iranian catchment under dry-land cultivation and rangeland farming: Combining geochemical tracers and weathering indices. Journal of Hydrology: Regional Studies, 24, 100613. doi:
https://doi.org/10.1016/j.ejrh.2019.100613 [
DOI:10.1016/j.ejrh.2019.100613.]
42. Rajaee, T., Nourani, V., Zounemat-Kermani, M., Kisi, O., (2011). River suspended sediment load prediction: application of ANN and wavelet conjunction model. J. Hydrol. Eng. 16 (8), 613-627. [
DOI:10.1061/(ASCE)HE.1943-5584.0000347]
43. Ren J, Zhao M, Zhang W, Xu Q, Yuan J, Dong B (2020) Impact of the construction of cascade reservoirs on suspended sediment peak transport variation during flood events in the Three Gorges Reservoir. CATENA 188:104409. [
DOI:10.1016/j.catena.2019.104409]
44. Shojaeezadeh SA, Nikoo MR, McNamara JP, AghaKouchak A, Sadegh M (2018). Stochastic modeling of suspended sediment load in alluvial rivers. Adv Water Resour 119:188-196. [
DOI:10.1016/j.advwatres.2018.06.006]
45. Solomatine, D.P., Torres, L.A., 1996. Neural network approximation of a hydrodynamicmodel. In: Optimizing Reservoir Operation, Proceedings of the Second International Conference on Hydroinformatics , Zurich, pp. 201-206.
46. Tao, H., Diop, L., Bodian, A., Djaman, K., Ndiaye, P.M., Yaseen, Z.M., 2018. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. [
DOI:10.1016/j.agwat.2018.06.018]
47. Taylor, Karl E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. doi: [
DOI:10.1029/2000JD900719]
48. Tokar, A. Sezin, & Johnson, Peggy A. (1999). Rainfall-Runoff Modeling Using Artificial Neural Networks. Journal of Hydrologic Engineering, 4(3), 232-239. doi: doi:10.1061/(ASCE)1084-0699(1999)4:3(232) [
DOI:10.1061/(ASCE)1084-0699(1999)4:3(232)]
49. Wen, C.G., Lee, C.S., )1998(. A neural network approach to multi-objective optimization for water quality management in a river basin. Water Resources Research 34 (3), 427-436. [
DOI:10.1029/97WR02943]
50. Yang CT, Marsooli R, Aalami MT (2009). Evaluation of total load sediment transport formulas using ANN. Int J Sedim Res 24(3):274-286. [
DOI:10.1016/S1001-6279(10)60003-0]
51. Yang, C.C., Prasher, S.O., Tan, C.S., 1998. An artificial neural network model for water table management systems. In: Drainage in the 21st Century: Food Production and the Environment. Proceedings of the Seventh International Drainage Symposium, Orlando, Florida, USA, 8-10 March 1998, ASAE, St. Joseph, MI.
52. Yu, H., Wen, X., Feng, Q., Deo, R.C., Si, J., Wu, M., 2018. Comparative Study of Hybrid- Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China. Water Resour. Manag.
https://doi.org/10.1007/s11269-017-1811-6 [
DOI:10.1007/s11269-017-1811-6.]