1. Abtahi, M. (2019). Investigation of Biodegradable Polymer-Cellulosic Mulch Persistence and Effects on Seed Germination and Establishment of Desert. Iranian Rangeland and Desert Research, 26(3), 517-530. doi:10.22092/ijrdr.2019.119986 (In Persian)
2. Banedjschafie, S., Khosroshahi, M., Kashi Zenouzi, L., & Jafari, A. (2021). Investigation of the effect of Nucleus Mulch (MA-19) on seed germination and seedlings growth of Holoxylon and Qara-Dagh Nitraria. Iranian Rangeland and Desert Research, 28(1), 106-117. doi:10.22092/ijrdr.2021.123877 (In Persian)
3. Behforouz, B., Balkanlou, V., Naseri, F., Kasehchi, E., Mohseni, E., & Ozbakkaloglu, T. (2020). Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates. International Journal of Environmental Science and Technology, 17(6), 3251-3260. [
DOI:10.1007/s13762-020-02643-x]
4. Bhavsar, J. K., & Panchal, V. (2022). Ceramic waste powder as a partial substitute of fly ash for geopolymer concrete cured at ambient temperature. Civ. Eng. J, 8, 1369-1387. [
DOI:10.28991/CEJ-2022-08-07-05]
5. Bohlouli, M., Imam, M., & Khaleghi, M. (2023). Stabilization of a dune sandy soil with steel-slag-based geopolymer and nanosilica. Transportation infrastructure engineering, 9(3), 119-137. doi:10.22075/jtie.2023.29893.1637 (In Persian)
6. Canarini, A., Schmidt, H., Fuchslueger, L., Martin, V., Herbold, C. W., Zezula, D., . . . Bahn, M. (2021). Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 12(1), 5308. [
DOI:10.1038/s41467-021-25675-4]
7. de Carvalho, A. R., da Silva Calderón-Morales, B. R., Júnior, J. C. B., de Oliveira, T. M., & Silva, G. J. B. (2023). Proposition of geopolymers obtained through the acid activation of iron ore tailings with phosphoric acid. Construction and Building Materials, 403, 133078. [
DOI:10.1016/j.conbuildmat.2023.133078]
8. de Farias, L. M., & Marinho, J. L. A. (2020). Construções sustentáveis: Perspectivas sobre práticas utilizadas na construção civil. Brazilian Journal of Development, 6(3), 16023-16033. [
DOI:10.34117/bjdv6n3-466]
9. Demo AH and Asefa Bogale G (2024) Enhancing crop yield and conserving soil moisture through mulching practices in dryland agriculture. Front. Agron. 6:1361697. doi: 10.3389/fagro.2024.1361697 [
DOI:10.3389/fagro.2024.1361697]
10. Dihaji, H., Azerkane, D., Bih, L., Essaddek, A., & Haily, E. M. (2025). Comparative study of geopolymers synthesized with alkaline and acid reactants at various liquid-to-solid ratios using Moroccan kaolin clay. Construction and Building Materials, 468, 140453. [
DOI:10.1016/j.conbuildmat.2025.140453]
11. Długosz, J., Piotrowska-Długosz, A., & Breza-Boruta, B. (2024). The effect of differences in soil water content on microbial and enzymatic properties across the soil profiles. Ecohydrology & Hydrobiology, 24(3), 547-556. [
DOI:10.1016/j.ecohyd.2023.06.010]
12. dos Santos, L. F., de Carvalho, J. M. F., Peixoto, R. A. F., & Brigolini, G. J. (2019). Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties. Construction and Building Materials, 220, 375-385. [
DOI:10.1016/j.conbuildmat.2019.05.181]
13. El-Dieb, A. (2018). From landfill to sustainable concrete. MOJ Civil Engineering, 4(4), 136-136. [
DOI:10.15406/mojce.2018.04.00110]
14. El-Beltagi, H. S., Basit, A., Mohamed, H. I., Ali, I., Ullah, S., Kamel, E. A., ... & Ghazzawy, H. S. (2022). Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy, 12(8), 1881. [
DOI:10.3390/agronomy12081881]
15. Guan, H., Mu, Y., Song, R., Lan, Y., Du, X., Li, J., . . . Sang, W. (2022). Soil microbial communities in desert grassland around rare earth mine: Diversity, variation, and response patterns. Sustainability, 14(23), 15629. [
DOI:10.3390/su142315629]
16. Haily, E., Ait Ousaleh, H., Zari, N., Faik, A., Bouhfid, R., & Qaiss, A. (2023). Use of a form-stable phase change material to improve thermal properties of phosphate sludge-based geopolymer mortar. Construction and Building Materials, 386, 131570. [
DOI:10.1016/j.conbuildmat.2023.131570]
17. Hanegbi, N., & Katra, I. (2020). A clay-based geopolymer in loess soil stabilization. Applied Sciences, 10(7), 2608. [
DOI:10.3390/app10072608]
18. Kasehchi, E., Arjomand, M. A., & Elizei, M. H. A. (2024). Experimental investigation of the feasibility of stabilizing inshore silty sand soil using geopolymer based on ceramic waste powder: An approach to upcycling waste material for sustainable construction. Case Studies in Construction Materials, 20, e02979. [
DOI:10.1016/j.cscm.2024.e02979]
19. Katra, I. (2022). A clay-based geopolymer in loess stabilization to water and wind soil erosion. . In EGU General Assembly Conference Abstracts pp. EGU22-8329. [
DOI:10.5194/egusphere-egu22-8329]
20. Kaze, C. R., Lecomte-Nana, G. L., Kamseu, E., Camacho, P. S., Provis, J. L., Duttine, M., . . . Melo, U. C. (2021). Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cement and Concrete Research, 140, 106320. [
DOI:10.1016/j.cemconres.2020.106320]
21. Komaei, A., Soroush, A., Fattahi, S. M., & Ghanbari, H. (2023). Wind erosion control using alkali-activated slag cement: Experimental investigation and microstructural analysis. Journal of Environmental Management, 344, 118633. [
DOI:10.1016/j.jenvman.2023.118633]
22. Koohestani, B., Darban, A. K., Mokhtari, P., Darezereshki, E., & Yilmaz, E. (2021). Geopolymerization of soil by sodium silicate as an approach to control wind erosion. International Journal of Environmental Science and Technology, 18(7), 1837-1848. [
DOI:10.1007/s13762-020-02943-2]
23. Lalruatsangi, E., Hazarika, B., & Raja, P. (2019). Effect of organic and inorganic mulching on soil microbial population in acid lime (Citrus aurantifolia Swingle). International Journal of Current Microbiology and Applied Sciences, 8(7), 2062-2064. [
DOI:10.20546/ijcmas.2019.807.247]
24. Lazorenko, G., Kasprzhitskii, A., Shaikh, F., Krishna, R., & Mishra, J. (2021). Utilization potential of mine tailings in geopolymers: Physicochemical and environmental aspects. Process Safety and Environmental Protection, 147, 559-577. [
DOI:10.1016/j.psep.2020.12.028]
25. Louati, S., Baklouti, S., & Samet, B. (2016). Geopolymers Based on Phosphoric Acid and Illito‐Kaolinitic Clay. Advances in Materials Science and Engineering, 2016(1), 2359759. [
DOI:10.1155/2016/2359759]
26. Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., & Sahmaran, M. (2021). Development of optimized binary ceramic tile and concrete wastes geopolymer binders for in-situ applications. Journal of Building Engineering, 43, 102906. [
DOI:10.1016/j.jobe.2021.102906]
27. Merrikhpour, H., Azimi, S. B., Badamfirooz, J., & Montazami, S. (2022). Investigating the effects of two emulsion mulch types on soil properties: a case study of Aran and Bidgol desert areas. Desert Ecosystem Engineering, 10(33), 13-26.
28. Middleton, N., & Kang, U. (2017). Sand and dust storms: Impact mitigation. Sustainability, 9(6), 1053. [
DOI:10.3390/su9061053]
29. Nikolov, A. (2020). Alkali and acid activated geopolymers based on iron-silicate fines-by-product from copper industry. International scientific journal" machines. Technologies. Materials, 14(1). [
DOI:10.1088/1757-899X/951/1/012006]
30. Planning and Budget Organization of Iran & Department of Environment. (2019). Technical Instruction for Evaluating the Efficiency of Soil Stabilizers (Mulch) (Regulation No. 783). Tehran, Iran. (In Persian)
31. Polignano, M. V., & Lemos, R. S. (2020). Rompimento da barragem da vale em brumadinho: impactos socioambientais na bacia do rio paraopeba. Ciência e Cultura, 72(2), 37-43. [
DOI:10.21800/2317-66602020000200011]
32. Prates, C. D., Lima, A. S., Ferreira, I. C., Paula, F. G. d., Pinto, P. S., Ardisson, J. D., . . . Teixeira, A. P. C. (2023). Use of iron ore tailing as raw material for two products: sodium silicate and geopolymers. Journal of the Brazilian Chemical Society, 34(6), 809-818. [
DOI:10.21577/0103-5053.20220149]
33. Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-48. [
DOI:10.1016/j.cemconres.2017.02.009]
34. Qu, Q., Wang, Z., Gan, Q., Liu, R., & Xu, H. (2023). Impact of drought on soil microbial biomass and extracellular enzyme activity. Frontiers in plant science, 14, 1221288. [
DOI:10.3389/fpls.2023.1221288]
35. Quintana, J. R., Martín-Sanz, J. P., Valverde-Asenjo, I., & Molina, J. A. (2023). Drought differently destabilizes soil structure in a chronosequence of abandoned agricultural lands. Catena, 222, 106871. [
DOI:10.1016/j.catena.2022.106871]
36. Rezaie, A. (2009). Comparison between Polylatice polymer and petroleum mulch on seed germination and plant establishment in sand dune fixation. Iranian Rangeland and Desert Research, 16(1), 124-136. Retrieved from https://ijrdr.areeo.ac.ir/article_103249_c944f788f1e0aa9821ea32785793f2c2.pdf (In Persian)
37. Sabohi, R., Heidari Morchekhorti, F., Khodagholi, M., & Salehpour, S. (1400). Investigating the possibility of using Asia's safe polymer to reduce wind erosion and fine dust. Iranian Journal of Rangeland and Desert Research, 28(2), 280-295. (In Persian)
38. Sahoo, S., & Singh, S. P. (2022). Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers. Construction and Building Materials, 328, 127078. [
DOI:10.1016/j.conbuildmat.2022.127078]
39. Shahnavaz, M., Nourzadeh Haddad, M., Gholami, A., & Panahpoor, I. (2017). Study of Performance polymer and plant mulch to reduce soil loss in areas prone to wind erosion in Khuzestan. Iranian Journal of Soil and Water Research, 48(3), 651-658.
40. Sharma, S. K. (2020). ~ i~ High Density Planting of Subtropical Fruits-I Litchi An Introduction to Contemporary Orchard Management (Vol. 1). Nitya Publications.
41. Shariatmadari, N., Mohebbi, H., & Javadi, A. A. (2021). Surface stabilization of soils susceptible to wind erosion using volcanic ash-based geopolymer. Journal of Materials in Civil Engineering, 33(12), 04021345. [
DOI:10.1061/(ASCE)MT.1943-5533.0003981]
42. Tchakouté, H. K., & Rüscher, C. H. (2017). Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Applied Clay Science, 140, 81-87. [
DOI:10.1016/j.clay.2017.02.002]
43. Tchakouté, H. K., Rüscher, C. H., Kamseu, E., Djobo, J. N., & Leonelli, C. (2017). The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements. Materials Chemistry and Physics, 199, 280-288. [
DOI:10.1016/j.matchemphys.2017.07.020]
44. Valente, M., Sambucci, M., Chougan, M., & Ghaffar, S. H. (2022). Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber. Journal of cleaner production(333), 130013. [
DOI:10.1016/j.jclepro.2021.130013]
45. van Riessen, A., Jamieson, E., Gildenhuys, H., Skane, R., & Allery, J. (2025). Using XRD to Assess the Strength of Fly-Ash-and Metakaolin-Based Geopolymers. Materials, 18(9), 2093. [
DOI:10.3390/ma18092093]
46. Wang, Y., Liu, L., Luo, Y., Awasthi, M. K., Yang, J., Duan, Y., ... & Zhao, Z. (2020). Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system. Science of the total environment, 725, 138527. [
DOI:10.1016/j.scitotenv.2020.138527]
47. Zeng, H., Pu, S., Cai, G., Duan, W., Shen, Z., Xu, B., . . . Xu, Y. (2024). Comparative study on the preparation of phosphate-based geopolymers using different activators. Construction and Building Materials, 437, 137000. [
DOI:10.1016/j.conbuildmat.2024.137000]
48. Zhang, S., Wang, Y., Sun, L., Qiu, C., Ding, Y., Gu, H., ... & Ding, Z. (2020). Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC microbiology, 20(1), 103. [
DOI:10.1186/s12866-020-01794-8]
49. Zhao, X., Ma, X., Chen, B., Shang, Y., & Song, M. (2022). Challenges toward carbon neutrality in China: Strategies and countermeasures. Resources, Conservation and Recycling, 176, 105959 [
DOI:10.1016/j.resconrec.2021.105959]