زودآیند (تابستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مدیریت و کنترل مناطق بیابانی، دانشکده کویرشناسی و گردشگری، دانشگاه سمنان ، azolfaghari@semnan.ac.ir
چکیده:   (421 مشاهده)
فرسایش خاک، تحت تأثیر عواملی چون تغییر اقلیم،تخریب جنگل‌ها، کشاورزی نامناسب و مدیریت نادرست منابع، یکی از چالش‌های مهم زیست‌محیطی است. این پژوهش باهدف سنجش قابلیت نقشه­برداری رقومی خاک (DSM) در افزایش دقت ارزیابی خطر فرسایش­خاک در حوضه آبخیز دامغان‌رود بااستفاده از مدل RUSLE  به منظور رفع محدودیت‌های موجود در مدل‌سازی خطر فرسایش در مقیاس‌های محلی انجام شد. تعداد 112 نقطه با استفاده از روش مکعب لاتین (cLHS) انتخاب و نمونه­برداری از خاک و پوشش­گیاهی صورت گرفت. نقشه‌های عوامل C، P، LS، K و R در نرم‌افزارهای R-STUDIO و QGIS تهیه­شد. نتایج اولیه مدل­سازی نشان­داد که میانگین فرسایش سالانه در حوضه برابر با 58/36 تن در هکتار است. بررسی شرایط منطقه و داده­های واقعی نشان­دهنده بیش­برآورد مدل بود. از­این­رو عامل C مجددا با استفاده از نقشه‌ی درصد پوشش و سنگ­وسنگ­ریزه محاسبه­شد و وارد مدل گردید. این­بار مقدار فرسایش 81/19 تن در هکتار برآرود گردید و دقت مدل­سازی نزدیک­به 50 درصد افزایش یافت. طبقه‌بندی نقشه خطر فرسایش نشان­داد که 86/19 درصد مساحت حوضه در کلاس فرسایش شدید (بیش از 30 تن در هکتار)، 53 درصد در کلاس فرسایش متوسط (10 تا 30 تن در هکتار) و 28 درصد در کلاس فرسایش کم (کمتر از 4 تن در هکتار) قرار دارد. بررسی بافت خاک نشان­دادکه درصد بالای سیلت عامل اصلی فرسایش زیاد در برخی مناطق است، درحالی­که مناطق دارای خاک شنی یا پوشش­گیاهی مناسب، فرسایش کمتری را تجربه می­کنند. این یافته‌ها نشان می‌دهد استفاده از DSM برای تهیه نقشه­های ورودی مدل RUSLE و محاسبه عامل C با استفاده از داده­های درصد پوشش و سنگ­وسنگ­ریزه، می‌تواند به‌طور دقیق‌تری دینامیک واقعی فرسایش را نشان­داده و راهنمای مؤثری برای استراتژی‌های حفاظتی خاک ارائه دهد.
 
     

فهرست منابع
1. Abedini, M., Fathi Jokandan, R., & Pasban, A. (2024). Estimating erosion and sediment through evaluation of affecting variables in the catchment basin of Karganroud using EPM model. Geography and Human Relationships, 7(1), 658-672.‏
2. Al-Khreisat, K., El-Korchi, M. M., & McKenna, S. J. (2022). Spatial variability of rainfall erosivity and its impact on soil erosion: A study from the Eastern Mediterranean. Journal of Hydrology.
3. Alvarez, C. G., Martinez, J. R., & Gómez, S. L. (2024). Effects of topography and slope gradient on soil erosion: A study in the Mediterranean region. *Earth Surface Processes and Landforms*.
4. Amini, E., Zolfaghari, A., Kaboli, H., & Rahimi, M. (2022). Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province). Iranian Journal of Soil and Water Research, 53(9), 2027-2044.
5. Amira, F., Ghernaout, R., Saad, D., & Boualem, R. (2024). Assessing soil erosion through the implementation of the RUSLE model and geospatial technology in the Isser watershed, northern Algeria. *Water Science & Technology: Water Supply*, 24(1), 154-164. [DOI:10.2166/ws.2024.154]
6. Anthony, K. (2022). Assessing the accuracy of interpolation methods to map soil properties at a regional scale in Extremadura (SW Spain). *EGU General Assembly Conference Abstracts, 24*, EGU22-11074. [DOI:10.5194/egusphere-egu22-11074]
7. Aouichaty, N., Bouslıhım, Y., Hilali, S., Zouhri, A., & Koulali, Y. (2024). Assessing the influence of multiresolution DEMs on soil loss prediction using the RUSLE model in central Morocco. *Journal of Geological Society of India*. [DOI:10.17491/jgsi/2024/173849]
8. Bai, Y., & Cui, H. (2021). An improved vegetation cover and management factor for RUSLE model in prediction of soil erosion. *Environmental Science and Pollution Research*, 28(5), 5671-5683. https://doi.org/10.1007/s11356-020-11820-x [DOI:10.1007/S11356-020-11820-X.]
9. Bai, Y., & Cui, H. (2021). An improved vegetation cover and management factor for the RUSLE model in prediction of soil erosion. *Environmental Science and Pollution Research, 28*(15), 18901-18912. https://doi.org/10.1007/s11356-020-11820-x [DOI:10.1007/S11356-020-11820-X]
10. Bezak, N., Borrelli, P., Mikoš, M., Auflič, M. J., & Panagos, P. (2024). Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments. Catena. https://doi.org/10.1016/j.catena.2023.107596 [DOI:10.1016/j.catena.2023.107596.]
11. Blanco-Canqui, H., & Lal, R. (2022). Water erosion. In *Soil erosion and carbon dynamics* (pp. 27-45). Springer. [DOI:10.1007/978-3-031-30341-8_2]
12. Cao, L., Zhang, T., & Wang, Y. (2021). Adapting the WEPP hillslope model to predict unpaved road soil erosion in southern China. Authorea Preprints.‏ [DOI:10.22541/au.162806016.68481230/v1]
13. Casabella-González, M. J., Borselli, L., & García-Meza, J. V. (2023). Improved MPSIAC model for soil erosion rate assessment in semiarid zones. Journal of Arid Environments, 212, 104946.‏ [DOI:10.1016/j.jaridenv.2023.104946]
14. Chen, L., Yang, J., & Li, W. (2022). Kriging-based estimation of soil organic carbon in semi-arid regions using remote sensing data. *Catena*, 210, 105731. [DOI:10.1016/j.catena.2022.105731.]
15. Chen, L., Yang, J., & Li, W. (2022). Kriging-based estimation of soil organic carbon in semi-arid regions using remote sensing data. Catena, 105731. [DOI:10.1016/j.catena.2022.105731.]
16. Chen, N., Gao, Y., Gao, Y., Yang, C., & Hu, G. (2018). Effect of clay content on the strength of gravel soil in the source region of debris flow. Journal of Mountain Science, 15(5), 915-924. https://doi.org/10.1007/s11629-018-4911-8 [DOI:10.1007/S11629-018-4911-8]
17. Chen, N., Gao, Y., Yang, C., & Hu, G. (2018). Effect of clay content to the strength of gravel soil in the source region of debris flow. *Journal of Mountain Science*, 15(5), 963-971. https://doi.org/10.1007/s11629-018-4911-8 [DOI:10.1007/S11629-018-4911-8.]
18. Davis, K. L., Robinson, M. J., & Green, T. W. (2022). Correlation between vegetation coverage and erosion factors: A case study in agricultural areas of Central Europe. Agricultural Water Management.
19. Ding, H., Liu, L., Wu, J., & Zhang, Y. (2023). "Assessing the effectiveness of soil conservation practices in semi-arid regions using the WEPP model." Catena, 223, 106517.
20. Ebrahimzadeh, S., Motagh, M., Mahboub, V., & Mirdar Harijani, F. (2018). An improved RUSLE/SDR model for the evaluation of soil erosion. *Environmental Earth Sciences, 77*(4), 131. https://doi.org/10.1007/s12665-018-7635-8 [DOI:10.1007/S12665-018-7635-8]
21. Ekundayo, A., Adesina, O., Ajayi, G., Odumosu, J. O., & Kolade, T. S. (2024). Assessment of soil erosion susceptibility using multi-criteria analysis. *Environmental Technology and Science Journal, 15*(1), 50-64. [DOI:10.4314/etsj.v15i1.4]
22. Elhaddad, A., Abou Najm, M., & Berriane, A. (2022). Application of RUSLE model for soil erosion assessment in a semi-arid region of Morocco. Journal of Environmental Management, 113582. [DOI:10.1016/j.jenvman.2022.113582.]
23. Feng, R. (2022). Impact of climate and land use land cover changes on soil erosion. In *Water science and technology library*. [DOI:10.1007/978-981-19-8665-9_14]
24. Fernández, C., García, A., & Martín, J. (2022). Digital soil mapping for erosion risk assessment using RUSLE in Mediterranean environments. *Catena*. [DOI:10.1016/j.catena.2022.106029]
25. Fisher, K. L., White, J. M., & Lee, T. S. (2024). Variation in soil erodibility and its implications for erosion control in agricultural landscapes. *Agricultural Systems*.
26. Haddadchi, A., Phillips, C., & Vale, S. (2023). The influence of erosion sources on sediment-related water quality attributes. *EGU General Assembly Conference Abstracts*, 25, 10405. https://doi.org/10.5194/egusphere-egu23-10405 [DOI:10.5194/egusphere-egu23-10405.]
27. Haddadchi, A., Phillips, C., & Vale, S. S. (2023). The influence of erosion sources on sediment-related water quality attributes. *EGU General Assembly Conference Abstracts, 25*, EGU23-10405. [DOI:10.5194/egusphere-egu23-10405]
28. Harris, L. T., Clark, M. B., & Miller, S. J. (2024). Evaluating the impact of slope and vegetation on soil erosion control: A case study in sloping terrain. Land Degradation & Development.
29. Hossain, M. K., Miah, M. S., & Rahman, M. M. (2021). Soil erosion assessment using the RUSLE model, remote sensing, and GIS in the Shatt Al-Arab basin. Water, 13(24), 3511. [DOI:10.3390/w13243511]
30. Ip, S. C. Y., Satyanaga, A., & Rahardjo, H. (2021). Spatial variation of shear strength properties incorporating auxiliary variables. *Catena*, *203*, 105196. https://doi.org/10.1016/j.catena.2021.105196 [DOI:10.1016/J.CATENA.2021.105196]
31. Ivanov, N. M., Davies, R. A., & Petrova, L. T. (2023). Assessment of rainfall erosivity and its variability across different agro-ecological zones in Central Asia. Soil and Tillage Research.
32. Jemai, S., Kallel, A., Agoubi, B., & Abida, H. (2021). Soil erosion estimation in arid area by USLE model applying GIS and RS: Case of Oued El Hamma catchment, south-eastern Tunisia. Journal of the Indian Society of Remote Sensing, 49(6), 1293-1305.‏ [DOI:10.1007/s12524-021-01320-x]
33. Jiang, Z., He, Y., Zhao, G., Li, Z., Yuan, Q., & Liu, L. (2020). Quantitative evaluation of the spatial variation of surface soil properties in a typical alluvial plain of the lower Yellow River using classical statistics, geostatistics, and single fractal and multifractal methods. *Applied Sciences, 10*(17), 5796. https://doi.org/10.3390/app10175796 [DOI:10.3390/APP10175796]
34. Karakoyun, E., & Kaya, N. (2022). Hydrological simulation and prediction of soil erosion using the SWAT model in a mountainous watershed: a case study of Murat River Basin, Turkey. Journal of Hydro informatics, 24(6), 1175-1193.‏ [DOI:10.2166/hydro.2022.056]
35. Karami, M., Keshavarzi, A., & Abbasi, M. (2022). Soil erosion estimation using RUSLE model under different land use scenarios in Iran. Environmental Earth Sciences, 10532. [DOI:10.1007/s12665-022-10532-3]
36. Kenny, A. (2022). Assessing the accuracy of interpolation methods to map soil properties at regional scale in Extremadura (SW Spain). *EGU General Assembly Conference Abstracts*, 24, 11074. https://doi.org/10.5194/egusphere-egu22-11074 [DOI:10.5194/egusphere-egu22-11074.]
37. Khalili Vavdareh, S., Shahnazari, A., & Sarraf, A. (2022). Investigating Anzali Wetland Sediment Estimation Using the MPSIAC Model. Frontiers in Earth Science, 10, 736125.‏ [DOI:10.3389/feart.2022.736125]
38. Kumar, R., Sharma, P., & Gupta, V. (2022). Application of IDW interpolation method for soil moisture estimation in arid regions of India. Geoderma, 115340. [DOI:10.1016/j.geoderma.2022.115340.]
39. Liu, Y. R., Yan, X., Xie, Y., & Wang, W. (2019). Effects of slope and rainfall intensity on runoff and soil erosion from furrow diking under simulated rainfall. *Catena, 175*, 224-231. https://doi.org/10.1016/j.catena.2019.02.004 [DOI:10.1016/J.CATENA.2019.02.004]
40. Lopez, J. H., Sanchez, A. M., & Fernandez, R. V. (2021). Assessment of vegetation cover and its impact on soil erosion using NDVI and C factor in the Mediterranean region. Journal of Environmental Management.
41. López, J., Serrano, J., & Vargas, P. (2023). Evaluating soil erosion and sediment yield using RUSLE model in semi-arid regions of Spain. Catena, 106537. [DOI:10.1016/j.catena.2022.106537]
42. Madhukar, A., Hari, N., Srivalli, R., & Neelima, T. L. (2023). Spatial Estimation of Soil Erosion Using RUSLE Model: A Case Study of Sangareddy Telangna State, India. International Journal of Plant & Soil Science, 35(18), 490-498. [DOI:10.9734/ijpss/2023/v35i183314]
43. Mahdavi, M., Hosseini, S., & Dehghani, S. (2023). Cokriging for improving soil salinity mapping in irrigated areas using auxiliary data. Journal of Arid Environments, 104957. [DOI:10.1016/j.jaridenv.2023.104957.]
44. Martínez, J., Fernández, M., & García, L. (2024). Impact of land use changes on soil erosion in a semi-arid watershed using RUSLE. Hydrology and Earth System Sciences, 28, 345-355. [DOI:10.5194/hess-28-345-2024]
45. Mazigh, N., Taleb, A., El Bilali, A., & Ballah, A. (2022). The effect of erosion control practices on the vulnerability of soil degradation in Oued EL Malleh catchment using the USLE model integrated into GIS, Morocco. Trends in Sciences, 19(2), 2059-2059.‏ [DOI:10.48048/tis.2022.2059]
46. Meyer, L. B., Fischer, T. J., & Schmidt, H. M. (2022). Influence of slope and elevation on soil erosion in agricultural watersheds: Insights from a Central European study. *Journal of Soil and Water Conservation*.
47. Mikołaj, M., Czuchaj, A., & Marciniak, M. (2023). Impact of rainfall intensity on soil erosion based on experimental research. *Landform Analysis*. [DOI:10.12657/landfana-042-002]
48. Mondal, C., Karim, M., & Ghosh, S. (2024). Utilizing GIS and remote sensing for soil loss estimation in Kopai River basin: An application of the RUSLE model. *Proceedings of the Indian National Science Academy*. [DOI:10.1007/s43538-024-00283-0]
49. Motamedirad, M., Zangane Asadi, M. A., & Ajam, H. (2023). Investigating the rate of soil erosion and sediment production using the RUSLE model and the modified method PSIAC (case study: kal basin of Ismail, Shahrood city, Semnan province). Quantitative Geomorphological Research, 11(4), 147-165.‏
50. Moutaoikil, N., Benzougagh, B., Mastere, M., El Fellah, B., & Lamrani, H. (2023). The impact of soil erosion on environments: A case study of the Oued Beht Watershed (Morocco). *BIO Web of Conferences*. [DOI:10.1051/bioconf/202411501006]
51. Musa, O. I., Samuel, J., Adams, M. V., Abdulsalam, M., Nathaniel, V., Mohammed, A., Maude, O., Adedayo, J., & Tiamiyu, A. T. (2023). Soil erosion, mineral depletion and regeneration. *Earth and Environmental Sciences Library*. [DOI:10.1007/978-3-031-53270-2_7]
52. Ndlovu, V., Moyo, P., & Dube, S. (2024). Using DSM to improve soil erodibility factor estimations for RUSLE in Sub-Saharan Africa. *Environmental Research*. [DOI:10.1016/j.envres.2024.115936.]
53. Nozari, S., Pahlavan-Rad, M. R., Brungard, C. W., Heung, B., & Borůvka, L. (2024). Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic. *Soil and Water Research*. https://doi.org/10.17221/119/2023-SWR [DOI:10.17221/119/2023-swr]
54. Odoh, B.I., C., P., Arukwe-Moses., C., V., Ahaneku., Glory, E., Nwafor., T., E., Onyebum., Ogonna, T., Emenaha., Chijioke, V., Orabueze., Irene, C., Meniru., E., J., Amasiani., O., G., Ozoemena. (2024). 4. The Implications of Geotechnical Properties of Soil in the Development of Gully Erosion in Ukpor, Southeastern Nigeria. International journal of research and innovation in applied science, doi: 10.51584/ijrias.2024.907064. [DOI:10.51584/IJRIAS.2024.907064]
55. Peters, A. C., Morgan, D. W., & Harrison, E. F. (2022). Assessment of soil erodibility in relation to soil texture and organic matter content: A case study in Northern Europe. *Catena*.
56. Peterson, R. A., Martin, L. T., & Wright, H. S. (2024). Vegetation index and erosion control: Analyzing NDVI and C factor in high-gradient mountainous areas. Earth Surface Processes and Landforms.
57. Qianqian, C., Richer-de-Forges, A. C., Chen, S., Vaudour, E., Bispo, A., & Arrouays, D. (2024). Uncertainty in digital soil mapping at broad scale: A review. *EGU General Assembly 2024*, 6005. [DOI:10.5194/egusphere-egu24-6005]
58. Qin, R., Xiao, L., Farella, E. M., & Remondino, F. (2022). Uncertainty-guided depth fusion from multi-view satellite images to improve the accuracy in large-scale DSM generation. *Remote Sensing*, *14*(6), 1309. [DOI:10.3390/rs14061309]
59. Roberts, C. D., Green, A. L., & Taylor, R. P. (2022). Soil erosion control practices in agricultural and forested areas: Impacts and effectiveness. Soil Science Society of America Journal.
60. Sartori, M., Ferrari, E., M'barek, R., Philippidis, G., Boysen-Urban, K., Borrelli, P., Montanarella, L., & Panagos, P. (2023). Remaining loyal to our soil: A prospective integrated assessment of soil erosion on global food security. *Ecological Economics*. [DOI:10.1016/j.ecolecon.2023.108103]
61. Sharma, R. K., Gupta, M. S., & Joshi, P. N. (2021). Topographic factors and their impact on soil erosion: A case study in the Himalayan region. *Geomorphology*.
62. Sidi Almouctar, M. A., Wu, Y., Zhao, F., & Dossou, J. F. (2021). Soil erosion assessment using the RUSLE model and geospatial techniques in South-Central Niger (Maradi Region). Water, 13(24), 3511. https://doi.org/10.3390/w13243511 [DOI:10.3390/w13243511.]
63. Singh, S., & Sarma, K. (2023). Exploring soil spatial variability with GIS, remote sensing, and geostatistical approach. *Journal of Spatial Analysis and Environmental Studies*, *2*(1), 186. [DOI:10.56946/jspae.v2i1.186]
64. Smith, J. R., Johnson, L. T., & Brown, M. P. (2021). Soil erosion and its relationship with soil properties: A regional study in the Mediterranean Basin. *Soil Science Society of America Journal*.
65. Smith, P., Johnson, J. W., & Green, A. M. (2024). Impact of topographic and climatic factors on rainfall erosivity: A case study from the Southern Alps. Earth Surface Processes and Landforms.
66. Stumpf, F., Behrens, T., Schmidt, K., & Keller, A. (2024). Exploiting soil and remote sensing data archives for 3D mapping of multiple soil properties at the Swiss national scale. *Remote Sensing, 16*(15), 2712. [DOI:10.3390/rs16152712]
67. Vale, S. S., Smith, H., Davies-Colley, R. J., Dymond, J. R., Hughes, A. O., Haddadchi, A., & Phillips, C. (2022). The influence of erosion sources on sediment-related water quality attributes. *Science of The Total Environment*, *803*, 149989. [DOI:10.1016/j.scitotenv.2022.160452]
68. Wang, L., Zhou, J., & Li, Q. (2023). Application of digital soil mapping techniques for RUSLE input parameter estimation in a semi-arid region. *Geoderma*. [DOI:10.1016/j.geoderma.2023.115402]
69. Wang, W., Chen, X., Chen, Y., & Li, Z. (2022). "Simulation of soil erosion and sediment yield using the WEPP model in a semi-arid watershed." Journal of Arid Environments, 195, 104616.
70. Wilson, M. R., Edwards, H. K., & Brown, J. T. (2021). Effectiveness of erosion control measures in steep mountainous regions: A comparative study. Journal of Soil and Water Conservation.
71. Xiong, M., Leng, G., & Tang, Q. (2023). Global analysis of the cover-management factor for soil erosion modeling. Remote Sensing, 15(11), 2868. https://doi.org/10.3390/rs15112868 [DOI:10.3390/rs15112868.]
72. Yang, Q., Ni, S., Zhang, C., & Wang, J. (2024). Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. *Land Degradation & Development*. [DOI:10.1002/ldr.5163]
73. Yuda, R., & Ahmad, H. (2023). Prediction of erosion in hilly areas of Khilau sub-sub watershed using the RUSLE method. *ASEAN Engineering Journal*, *13*, 19238. [DOI:10.11113/aej.v13.19238]
74. Zeynali, H., & Hajigholizadeh, M. (2023). "Soil erosion and sediment yield estimation in a semi-arid basin using PSIAC model." Environmental Monitoring and Assessment, 195(3), 54.
75. Zhang, Y., Liu, H., & Wang, X. (2023). Polynomial interpolation for spatial variability analysis of soil nutrients in China. Environmental Monitoring and Assessment, 12345. [DOI:10.1007/s10661-023-12345-9.]
76. Zhenzhi, Z., Fangshi, J., Peisong, C., Pengyu, G., Jinshi, L., Hongli, G., Ming, K. W., & Yanhe, H. (2020). Effect of gravel content on the sediment transport capacity of overland flow. *Catena*. [DOI:10.1016/j.catena.2019.104447]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb