1. Abedini, M., Fathi Jokandan, R., & Pasban, A. (2024). Estimating erosion and sediment through evaluation of affecting variables in the catchment basin of Karganroud using EPM model. Geography and Human Relationships, 7(1), 658-672.
2. Al-Khreisat, K., El-Korchi, M. M., & McKenna, S. J. (2022). Spatial variability of rainfall erosivity and its impact on soil erosion: A study from the Eastern Mediterranean. Journal of Hydrology.
3. Alvarez, C. G., Martinez, J. R., & Gómez, S. L. (2024). Effects of topography and slope gradient on soil erosion: A study in the Mediterranean region. *Earth Surface Processes and Landforms*.
4. Amini, E., Zolfaghari, A., Kaboli, H., & Rahimi, M. (2022). Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province). Iranian Journal of Soil and Water Research, 53(9), 2027-2044.
5. Amira, F., Ghernaout, R., Saad, D., & Boualem, R. (2024). Assessing soil erosion through the implementation of the RUSLE model and geospatial technology in the Isser watershed, northern Algeria. *Water Science & Technology: Water Supply*, 24(1), 154-164. [
DOI:10.2166/ws.2024.154]
6. Anthony, K. (2022). Assessing the accuracy of interpolation methods to map soil properties at a regional scale in Extremadura (SW Spain). *EGU General Assembly Conference Abstracts, 24*, EGU22-11074. [
DOI:10.5194/egusphere-egu22-11074]
7. Aouichaty, N., Bouslıhım, Y., Hilali, S., Zouhri, A., & Koulali, Y. (2024). Assessing the influence of multiresolution DEMs on soil loss prediction using the RUSLE model in central Morocco. *Journal of Geological Society of India*. [
DOI:10.17491/jgsi/2024/173849]
8. Bai, Y., & Cui, H. (2021). An improved vegetation cover and management factor for RUSLE model in prediction of soil erosion. *Environmental Science and Pollution Research*, 28(5), 5671-5683.
https://doi.org/10.1007/s11356-020-11820-x [
DOI:10.1007/S11356-020-11820-X.]
9. Bai, Y., & Cui, H. (2021). An improved vegetation cover and management factor for the RUSLE model in prediction of soil erosion. *Environmental Science and Pollution Research, 28*(15), 18901-18912.
https://doi.org/10.1007/s11356-020-11820-x [
DOI:10.1007/S11356-020-11820-X]
10. Bezak, N., Borrelli, P., Mikoš, M., Auflič, M. J., & Panagos, P. (2024). Towards multi-model soil erosion modelling: An evaluation of the erosion potential method (EPM) for global soil erosion assessments. Catena.
https://doi.org/10.1016/j.catena.2023.107596 [
DOI:10.1016/j.catena.2023.107596.]
11. Blanco-Canqui, H., & Lal, R. (2022). Water erosion. In *Soil erosion and carbon dynamics* (pp. 27-45). Springer. [
DOI:10.1007/978-3-031-30341-8_2]
12. Cao, L., Zhang, T., & Wang, Y. (2021). Adapting the WEPP hillslope model to predict unpaved road soil erosion in southern China. Authorea Preprints. [
DOI:10.22541/au.162806016.68481230/v1]
13. Casabella-González, M. J., Borselli, L., & García-Meza, J. V. (2023). Improved MPSIAC model for soil erosion rate assessment in semiarid zones. Journal of Arid Environments, 212, 104946. [
DOI:10.1016/j.jaridenv.2023.104946]
14. Chen, L., Yang, J., & Li, W. (2022). Kriging-based estimation of soil organic carbon in semi-arid regions using remote sensing data. *Catena*, 210, 105731. [
DOI:10.1016/j.catena.2022.105731.]
15. Chen, L., Yang, J., & Li, W. (2022). Kriging-based estimation of soil organic carbon in semi-arid regions using remote sensing data. Catena, 105731. [
DOI:10.1016/j.catena.2022.105731.]
16. Chen, N., Gao, Y., Gao, Y., Yang, C., & Hu, G. (2018). Effect of clay content on the strength of gravel soil in the source region of debris flow. Journal of Mountain Science, 15(5), 915-924.
https://doi.org/10.1007/s11629-018-4911-8 [
DOI:10.1007/S11629-018-4911-8]
17. Chen, N., Gao, Y., Yang, C., & Hu, G. (2018). Effect of clay content to the strength of gravel soil in the source region of debris flow. *Journal of Mountain Science*, 15(5), 963-971.
https://doi.org/10.1007/s11629-018-4911-8 [
DOI:10.1007/S11629-018-4911-8.]
18. Davis, K. L., Robinson, M. J., & Green, T. W. (2022). Correlation between vegetation coverage and erosion factors: A case study in agricultural areas of Central Europe. Agricultural Water Management.
19. Ding, H., Liu, L., Wu, J., & Zhang, Y. (2023). "Assessing the effectiveness of soil conservation practices in semi-arid regions using the WEPP model." Catena, 223, 106517.
20. Ebrahimzadeh, S., Motagh, M., Mahboub, V., & Mirdar Harijani, F. (2018). An improved RUSLE/SDR model for the evaluation of soil erosion. *Environmental Earth Sciences, 77*(4), 131.
https://doi.org/10.1007/s12665-018-7635-8 [
DOI:10.1007/S12665-018-7635-8]
21. Ekundayo, A., Adesina, O., Ajayi, G., Odumosu, J. O., & Kolade, T. S. (2024). Assessment of soil erosion susceptibility using multi-criteria analysis. *Environmental Technology and Science Journal, 15*(1), 50-64. [
DOI:10.4314/etsj.v15i1.4]
22. Elhaddad, A., Abou Najm, M., & Berriane, A. (2022). Application of RUSLE model for soil erosion assessment in a semi-arid region of Morocco. Journal of Environmental Management, 113582. [
DOI:10.1016/j.jenvman.2022.113582.]
23. Feng, R. (2022). Impact of climate and land use land cover changes on soil erosion. In *Water science and technology library*. [
DOI:10.1007/978-981-19-8665-9_14]
24. Fernández, C., García, A., & Martín, J. (2022). Digital soil mapping for erosion risk assessment using RUSLE in Mediterranean environments. *Catena*. [
DOI:10.1016/j.catena.2022.106029]
25. Fisher, K. L., White, J. M., & Lee, T. S. (2024). Variation in soil erodibility and its implications for erosion control in agricultural landscapes. *Agricultural Systems*.
26. Haddadchi, A., Phillips, C., & Vale, S. (2023). The influence of erosion sources on sediment-related water quality attributes. *EGU General Assembly Conference Abstracts*, 25, 10405.
https://doi.org/10.5194/egusphere-egu23-10405 [
DOI:10.5194/egusphere-egu23-10405.]
27. Haddadchi, A., Phillips, C., & Vale, S. S. (2023). The influence of erosion sources on sediment-related water quality attributes. *EGU General Assembly Conference Abstracts, 25*, EGU23-10405. [
DOI:10.5194/egusphere-egu23-10405]
28. Harris, L. T., Clark, M. B., & Miller, S. J. (2024). Evaluating the impact of slope and vegetation on soil erosion control: A case study in sloping terrain. Land Degradation & Development.
29. Hossain, M. K., Miah, M. S., & Rahman, M. M. (2021). Soil erosion assessment using the RUSLE model, remote sensing, and GIS in the Shatt Al-Arab basin. Water, 13(24), 3511. [
DOI:10.3390/w13243511]
30. Ip, S. C. Y., Satyanaga, A., & Rahardjo, H. (2021). Spatial variation of shear strength properties incorporating auxiliary variables. *Catena*, *203*, 105196.
https://doi.org/10.1016/j.catena.2021.105196 [
DOI:10.1016/J.CATENA.2021.105196]
31. Ivanov, N. M., Davies, R. A., & Petrova, L. T. (2023). Assessment of rainfall erosivity and its variability across different agro-ecological zones in Central Asia. Soil and Tillage Research.
32. Jemai, S., Kallel, A., Agoubi, B., & Abida, H. (2021). Soil erosion estimation in arid area by USLE model applying GIS and RS: Case of Oued El Hamma catchment, south-eastern Tunisia. Journal of the Indian Society of Remote Sensing, 49(6), 1293-1305. [
DOI:10.1007/s12524-021-01320-x]
33. Jiang, Z., He, Y., Zhao, G., Li, Z., Yuan, Q., & Liu, L. (2020). Quantitative evaluation of the spatial variation of surface soil properties in a typical alluvial plain of the lower Yellow River using classical statistics, geostatistics, and single fractal and multifractal methods. *Applied Sciences, 10*(17), 5796.
https://doi.org/10.3390/app10175796 [
DOI:10.3390/APP10175796]
34. Karakoyun, E., & Kaya, N. (2022). Hydrological simulation and prediction of soil erosion using the SWAT model in a mountainous watershed: a case study of Murat River Basin, Turkey. Journal of Hydro informatics, 24(6), 1175-1193. [
DOI:10.2166/hydro.2022.056]
35. Karami, M., Keshavarzi, A., & Abbasi, M. (2022). Soil erosion estimation using RUSLE model under different land use scenarios in Iran. Environmental Earth Sciences, 10532. [
DOI:10.1007/s12665-022-10532-3]
36. Kenny, A. (2022). Assessing the accuracy of interpolation methods to map soil properties at regional scale in Extremadura (SW Spain). *EGU General Assembly Conference Abstracts*, 24, 11074.
https://doi.org/10.5194/egusphere-egu22-11074 [
DOI:10.5194/egusphere-egu22-11074.]
37. Khalili Vavdareh, S., Shahnazari, A., & Sarraf, A. (2022). Investigating Anzali Wetland Sediment Estimation Using the MPSIAC Model. Frontiers in Earth Science, 10, 736125. [
DOI:10.3389/feart.2022.736125]
38. Kumar, R., Sharma, P., & Gupta, V. (2022). Application of IDW interpolation method for soil moisture estimation in arid regions of India. Geoderma, 115340. [
DOI:10.1016/j.geoderma.2022.115340.]
39. Liu, Y. R., Yan, X., Xie, Y., & Wang, W. (2019). Effects of slope and rainfall intensity on runoff and soil erosion from furrow diking under simulated rainfall. *Catena, 175*, 224-231.
https://doi.org/10.1016/j.catena.2019.02.004 [
DOI:10.1016/J.CATENA.2019.02.004]
40. Lopez, J. H., Sanchez, A. M., & Fernandez, R. V. (2021). Assessment of vegetation cover and its impact on soil erosion using NDVI and C factor in the Mediterranean region. Journal of Environmental Management.
41. López, J., Serrano, J., & Vargas, P. (2023). Evaluating soil erosion and sediment yield using RUSLE model in semi-arid regions of Spain. Catena, 106537. [
DOI:10.1016/j.catena.2022.106537]
42. Madhukar, A., Hari, N., Srivalli, R., & Neelima, T. L. (2023). Spatial Estimation of Soil Erosion Using RUSLE Model: A Case Study of Sangareddy Telangna State, India. International Journal of Plant & Soil Science, 35(18), 490-498. [
DOI:10.9734/ijpss/2023/v35i183314]
43. Mahdavi, M., Hosseini, S., & Dehghani, S. (2023). Cokriging for improving soil salinity mapping in irrigated areas using auxiliary data. Journal of Arid Environments, 104957. [
DOI:10.1016/j.jaridenv.2023.104957.]
44. Martínez, J., Fernández, M., & García, L. (2024). Impact of land use changes on soil erosion in a semi-arid watershed using RUSLE. Hydrology and Earth System Sciences, 28, 345-355. [
DOI:10.5194/hess-28-345-2024]
45. Mazigh, N., Taleb, A., El Bilali, A., & Ballah, A. (2022). The effect of erosion control practices on the vulnerability of soil degradation in Oued EL Malleh catchment using the USLE model integrated into GIS, Morocco. Trends in Sciences, 19(2), 2059-2059. [
DOI:10.48048/tis.2022.2059]
46. Meyer, L. B., Fischer, T. J., & Schmidt, H. M. (2022). Influence of slope and elevation on soil erosion in agricultural watersheds: Insights from a Central European study. *Journal of Soil and Water Conservation*.
47. Mikołaj, M., Czuchaj, A., & Marciniak, M. (2023). Impact of rainfall intensity on soil erosion based on experimental research. *Landform Analysis*. [
DOI:10.12657/landfana-042-002]
48. Mondal, C., Karim, M., & Ghosh, S. (2024). Utilizing GIS and remote sensing for soil loss estimation in Kopai River basin: An application of the RUSLE model. *Proceedings of the Indian National Science Academy*. [
DOI:10.1007/s43538-024-00283-0]
49. Motamedirad, M., Zangane Asadi, M. A., & Ajam, H. (2023). Investigating the rate of soil erosion and sediment production using the RUSLE model and the modified method PSIAC (case study: kal basin of Ismail, Shahrood city, Semnan province). Quantitative Geomorphological Research, 11(4), 147-165.
50. Moutaoikil, N., Benzougagh, B., Mastere, M., El Fellah, B., & Lamrani, H. (2023). The impact of soil erosion on environments: A case study of the Oued Beht Watershed (Morocco). *BIO Web of Conferences*. [
DOI:10.1051/bioconf/202411501006]
51. Musa, O. I., Samuel, J., Adams, M. V., Abdulsalam, M., Nathaniel, V., Mohammed, A., Maude, O., Adedayo, J., & Tiamiyu, A. T. (2023). Soil erosion, mineral depletion and regeneration. *Earth and Environmental Sciences Library*. [
DOI:10.1007/978-3-031-53270-2_7]
52. Ndlovu, V., Moyo, P., & Dube, S. (2024). Using DSM to improve soil erodibility factor estimations for RUSLE in Sub-Saharan Africa. *Environmental Research*. [
DOI:10.1016/j.envres.2024.115936.]
53. Nozari, S., Pahlavan-Rad, M. R., Brungard, C. W., Heung, B., & Borůvka, L. (2024). Digital soil mapping using machine learning-based methods to predict soil organic carbon in two different districts in the Czech Republic. *Soil and Water Research*.
https://doi.org/10.17221/119/2023-SWR [
DOI:10.17221/119/2023-swr]
54. Odoh, B.I., C., P., Arukwe-Moses., C., V., Ahaneku., Glory, E., Nwafor., T., E., Onyebum., Ogonna, T., Emenaha., Chijioke, V., Orabueze., Irene, C., Meniru., E., J., Amasiani., O., G., Ozoemena. (2024). 4. The Implications of Geotechnical Properties of Soil in the Development of Gully Erosion in Ukpor, Southeastern Nigeria. International journal of research and innovation in applied science, doi: 10.51584/ijrias.2024.907064. [
DOI:10.51584/IJRIAS.2024.907064]
55. Peters, A. C., Morgan, D. W., & Harrison, E. F. (2022). Assessment of soil erodibility in relation to soil texture and organic matter content: A case study in Northern Europe. *Catena*.
56. Peterson, R. A., Martin, L. T., & Wright, H. S. (2024). Vegetation index and erosion control: Analyzing NDVI and C factor in high-gradient mountainous areas. Earth Surface Processes and Landforms.
57. Qianqian, C., Richer-de-Forges, A. C., Chen, S., Vaudour, E., Bispo, A., & Arrouays, D. (2024). Uncertainty in digital soil mapping at broad scale: A review. *EGU General Assembly 2024*, 6005. [
DOI:10.5194/egusphere-egu24-6005]
58. Qin, R., Xiao, L., Farella, E. M., & Remondino, F. (2022). Uncertainty-guided depth fusion from multi-view satellite images to improve the accuracy in large-scale DSM generation. *Remote Sensing*, *14*(6), 1309. [
DOI:10.3390/rs14061309]
59. Roberts, C. D., Green, A. L., & Taylor, R. P. (2022). Soil erosion control practices in agricultural and forested areas: Impacts and effectiveness. Soil Science Society of America Journal.
60. Sartori, M., Ferrari, E., M'barek, R., Philippidis, G., Boysen-Urban, K., Borrelli, P., Montanarella, L., & Panagos, P. (2023). Remaining loyal to our soil: A prospective integrated assessment of soil erosion on global food security. *Ecological Economics*. [
DOI:10.1016/j.ecolecon.2023.108103]
61. Sharma, R. K., Gupta, M. S., & Joshi, P. N. (2021). Topographic factors and their impact on soil erosion: A case study in the Himalayan region. *Geomorphology*.
62. Sidi Almouctar, M. A., Wu, Y., Zhao, F., & Dossou, J. F. (2021). Soil erosion assessment using the RUSLE model and geospatial techniques in South-Central Niger (Maradi Region). Water, 13(24), 3511.
https://doi.org/10.3390/w13243511 [
DOI:10.3390/w13243511.]
63. Singh, S., & Sarma, K. (2023). Exploring soil spatial variability with GIS, remote sensing, and geostatistical approach. *Journal of Spatial Analysis and Environmental Studies*, *2*(1), 186. [
DOI:10.56946/jspae.v2i1.186]
64. Smith, J. R., Johnson, L. T., & Brown, M. P. (2021). Soil erosion and its relationship with soil properties: A regional study in the Mediterranean Basin. *Soil Science Society of America Journal*.
65. Smith, P., Johnson, J. W., & Green, A. M. (2024). Impact of topographic and climatic factors on rainfall erosivity: A case study from the Southern Alps. Earth Surface Processes and Landforms.
66. Stumpf, F., Behrens, T., Schmidt, K., & Keller, A. (2024). Exploiting soil and remote sensing data archives for 3D mapping of multiple soil properties at the Swiss national scale. *Remote Sensing, 16*(15), 2712. [
DOI:10.3390/rs16152712]
67. Vale, S. S., Smith, H., Davies-Colley, R. J., Dymond, J. R., Hughes, A. O., Haddadchi, A., & Phillips, C. (2022). The influence of erosion sources on sediment-related water quality attributes. *Science of The Total Environment*, *803*, 149989. [
DOI:10.1016/j.scitotenv.2022.160452]
68. Wang, L., Zhou, J., & Li, Q. (2023). Application of digital soil mapping techniques for RUSLE input parameter estimation in a semi-arid region. *Geoderma*. [
DOI:10.1016/j.geoderma.2023.115402]
69. Wang, W., Chen, X., Chen, Y., & Li, Z. (2022). "Simulation of soil erosion and sediment yield using the WEPP model in a semi-arid watershed." Journal of Arid Environments, 195, 104616.
70. Wilson, M. R., Edwards, H. K., & Brown, J. T. (2021). Effectiveness of erosion control measures in steep mountainous regions: A comparative study. Journal of Soil and Water Conservation.
71. Xiong, M., Leng, G., & Tang, Q. (2023). Global analysis of the cover-management factor for soil erosion modeling. Remote Sensing, 15(11), 2868.
https://doi.org/10.3390/rs15112868 [
DOI:10.3390/rs15112868.]
72. Yang, Q., Ni, S., Zhang, C., & Wang, J. (2024). Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. *Land Degradation & Development*. [
DOI:10.1002/ldr.5163]
73. Yuda, R., & Ahmad, H. (2023). Prediction of erosion in hilly areas of Khilau sub-sub watershed using the RUSLE method. *ASEAN Engineering Journal*, *13*, 19238. [
DOI:10.11113/aej.v13.19238]
74. Zeynali, H., & Hajigholizadeh, M. (2023). "Soil erosion and sediment yield estimation in a semi-arid basin using PSIAC model." Environmental Monitoring and Assessment, 195(3), 54.
75. Zhang, Y., Liu, H., & Wang, X. (2023). Polynomial interpolation for spatial variability analysis of soil nutrients in China. Environmental Monitoring and Assessment, 12345. [
DOI:10.1007/s10661-023-12345-9.]
76. Zhenzhi, Z., Fangshi, J., Peisong, C., Pengyu, G., Jinshi, L., Hongli, G., Ming, K. W., & Yanhe, H. (2020). Effect of gravel content on the sediment transport capacity of overland flow. *Catena*. [
DOI:10.1016/j.catena.2019.104447]