زودآیند (تابستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه طبیعت، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، یزد، ایران. ، mehditazeh@gmail.com
چکیده:   (187 مشاهده)

با توجه به اینکه صنایع مختلف، حجم زیادی از پساب­های رنگی از جمله متیل اورانژ را وارد محیط­ می­کنند، محققین همواره در جستجوی روش­های مختلفی برای حذف این دسته از آلاینده­ها از پساب­ها هستند. باز چرخانی آب، می­تواند کمک شایانی  به جبران کمبود آب کند و لازمه آن کاهش میزان آلودگیهای مختلف پساب­ها می­باشد. رنگهای مختلفی در پسابها وجود دارد و برای ازبین بردن متیل­ اورانژ، نسبت به سایر تکنیک­های حذف رنگ، جذب سطحی مناسبتر به نظر می­آید. جذب سطحی، ارزان قیمت بوده و دارای سادگی در طراحی و عملکرد است. هدف از پژوهش حاضر ارزیابی عملکرد ماسه­های مناطق بیابانی در کاهش متیل­ اورانژ از پساب می­باشد. بررسی با یک سری آزمایش‌ها به منظور تأثیر دوز جاذب ( 003/0 تا 02/0 گرم)، زمان تماس (1 تا 30 دقیقه)،  pH(3 تا 11) و غلظت اولیه رنگ (5 تا 65) در دمای محیط انجام شد. درصد حذف رنگ حدود 81 درصد از 5 میلی­گرم در لیتر متیل اورانژ، در 7=pH ، زمان 5 دقیقه  و وزن جاذب 006/0 گرم  به­دست آمد. داده­های تعادلی با استفاده از مدل­های ایزوترم جذب لانگمویر و فروندلیچ، تمکین و دوبینین مورد تجزیه و تحلیل قرار گرفت. با توجه به 98/0 R2= در ایزوترم لانگمویر، حداکثر ظرفیت جذب 011/28 میلی­گرم رنگ در هر گرم ماسه بیابانی به دست آمد. سینتیک­های شبه مرتبه اول و دوم به بررسی گذاشته شد و نتایج نشان دهنده پیروی از سینتیک شبه مرتبه دوم با16/99 R2= بود. نتایج نشان داد ماسه بیابانی می­تواند به عنوان جاذبی ارزان، در دسترس و سازگار با محیط­زیست برای حذف رنگ متیل اورانژ استفاده شود.


 

واژه‌های کلیدی: آلاینده، جذب سطحی، فرسایش، رنگزا
     
نوع مطالعه: پژوهشي | موضوع مقاله: مدیریت و کنترل اثرات فرسایش محیطی
دریافت: 1403/11/2

فهرست منابع
1. Al-Hazeef, M. S., Aidi, A., Hecini, L., Osman, A. I., Hasan, G. G., Althamthami, M., ... & Rooney, D. W. (2024). Valorizing date palm spikelets into activated carbon-derived composite for methyl orange adsorption: advancing circular bioeconomy in wastewater treatment-a comprehensive study on its equilibrium, kinetics, thermodynamics, and mechanisms. Environmental Science and Pollution Research, 1-20. https://link.springer.com/article/10.1007/s11356-024-34581-3 [DOI:10.1007/s11356-024-34581-3]
2. Bello, O. S., Bello, I. A., & Adegoke, K. A. (2013). Adsorption of dyes using different types of sand: A review. South African Journal of Chemistry, 66, 117-129.
3. Eleryan, A., Hassaan, M., Nazir, M.A. et al. Isothermal and kinetic screening of methyl red and methyl orange dyes adsorption from water by Delonix regia biochar-sulfur oxide (DRB-SO). Sci Rep 14, 13585 (2024). [DOI:10.1038/s41598-024-63510-0]
4. Fekri, M.H., Soleymani, S., Razavi Mehr, M., Saki, F. (2023). Removal of methyl orange dye from aqueous solutions by SBA-16 nano mesopore and optimization of effective parameters using response surface method, Iranian Journal of Health and Environment, 16(2), 339-356. magiran.com/p2624969
5. Kalantari, S., & Tazeh, M. (2024). Investigation of the efficacy of Alhagi maurorum plant powder for Janus Green B dye removal from wastewater. Int. J. Phytorem.,1-12. [DOI:10.1080/15226514.2024.2354415]
6. Ike, J. I., Babayemi, A. K., Egbosiuba, T. C., Jin, C. G., Mustapha, S., Yusuff, A. S., ... & Igwegbe, C. A. (2024). Treated Kaolin Clay Incorporated with Nickel Nanoparticles for Enhanced Removal of Crystal Violet and Methyl Orange from Textile Wastewater. ACS Applied Engineering Materials, 2(4), 1031-1046. [DOI:10.1021/acsaenm.4c00065]
7. Lafi, R., & Hafiane, A. (2016). Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). Journal of the Taiwan Institute of Chemical Engineers, 58, 424-433. [DOI:10.1016/j.jtice.2015.06.035]
8. Li, X., Wang, Z., Ning, J., Gao, M., Jiang, W., Zhou, Z., & Li, G. (2018). Preparation and characterization of a novel polyethyleneimine cation-modified persimmon tannin bioadsorbent for anionic dye adsorption. Journal of environmental management, 217, 305-314. [DOI:10.1016/j.jenvman.2018.03.107]
9. Lin, L., Zhai, S. R., Xiao, Z. Y., Song, Y., An, Q. D., & Song, X. W. (2013). Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource technology, 136, 437-443. [DOI:10.1016/j.biortech.2013.03.048]
10. Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Ogunfowora, L. A., & Igwegbe, C. A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry, 4, 100179. [DOI:10.1016/j.crgsc.2021.100179]
11. Mittal, A., Malviya, A., Kaur, D., Mittal, J., & Kurup, L. (2007). Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of hazardous materials, 148(1-2), 229-240. [DOI:10.1016/j.jhazmat.2007.02.028]
12. Mohammadi, R., Masoumi, B., & Mashayekhi, A. (2023).Comparison of the ability of magnetic nanocomposites of iron oxide, iron oxide/polystyrene and iron oxide/polyaniline in removing methyl orange from aqueous solutions. Iranian Journal of Analytical Chemistry, 10(2), 22-35. [DOI:10.30473/ijac.2023.68776.1272]
13. Moussout, H., Daou, I., Franco, D. S., Dehmani, Y., Georgin, J., Ahlafi, H., ... & Abouarnadasse, S. (2024). Towards a profound understanding of methyl orange removal from industrial wastewater using a raw walnut shell: Kinetics, equilibrium, thermodynamics, and statistical physics calculations. Journal of Molecular Liquids, 410, 125606. [DOI:10.1016/j.molliq.2024.125606]
14. Najibikhah, P., & Rahbar-Kelishami, A. (2024). Preparation of cationic surfactant modified two-dimensional (2D) multi-layered Ti3C2Tx MXene for methyl orange removal from aqueous solution: Kinetic, equilibrium, and adsorption mechanisms. Chemosphere, 350, 141058. [DOI:10.1016/j.chemosphere.2023.141058]
15. Piri Ardakani, F., Kalantari, S., Shirmardi, M., & Tazeh, M. (2024). Investigation of Eucalyptus camaldulensis and Tamarix aphylla species' capacities for methylene blue removal in wastewater and heavy metal remediation in soil. Environ. Monit. Assess., 196(8), 754. https://doi.org/ 10.1007/s10661-024-12903-9 [DOI:10.1007/s10661-024-12903-9]
16. Premkumar, M. P., Kumar, V. V., Kumar, P. S., Baskaralingam, P., Sathyaselvabala, V., Vidhyadevi, T., & Sivanesan, S. (2013). Kinetic and equilibrium studies on the biosorption of textile dyes onto Plantago ovata seeds. Korean Journal of Chemical Engineering, 30, 1248-1256. https://link.springer.com/article/10.1007/s11814-013-0049-0 [DOI:10.1007/s11814-013-0049-0]
17. Raghuvanshi, S. P., Singh, R., Kaushik, C. P., & Raghav, A. (2004). Kinetics study of methylene blue dye bioadsorption on baggase. Applied Ecology and Environmental Research, 2(2), 35-43. https://doi.org/10.15666/aeer/03035043 [DOI::10.15666/aeer/03035043]
18. Raji, F., Zafari, M., Rahbar-Kelishami, A. et al. Enhanced removal of methyl orange using modified anion exchange membrane adsorbent. Int. J. Environ. Sci. Technol. 20, 9823-9836 (2023). [DOI:10.1007/s13762-023-05089-z]
19. Ranjbari, Alireza, Juho Kim, Jihee Yu, Jiyun Kim, Mireu Park, Nayoung Kim, Kristof Demeestere, and Philippe M. Heynderickx. "Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: A kinetic study." Catalysis Today 427 (2024): 114413. [DOI:10.1016/j.cattod.2023.114413]
20. Senthil Kumar, P. (2010). Removal of Congo red from aqueous solutions by neem saw dust carbon. Colloid journal, 72(5), 703-709. https://link.springer.com/article/10.1134/S1061933X10050182 [DOI:10.1134/S1061933X10050182]
21. Senthil Kumar, P., Sivaranjanee, R., Vinothini, U., Raghavi, M., Rajasekar, K., & Ramakrishnan, K. (2014). Adsorption of dye onto raw and surface modified tamarind seeds: isotherms, process design, kinetics and mechanism. Desalination and Water Treatment, 52(13-15), 2620-2633. [DOI:10.1080/19443994.2013.792016]
22. Shabbir, S., Faheem, M., Ali, N., Kerr, P. G., & Wu, Y. (2017). Periphyton biofilms: a novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. Chemosphere, 167, 236-246. [DOI:10.1016/j.chemosphere.2016.10.002]
23. Subbaiah, M. V., & Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and environmental safety, 128, 109-117. [DOI:10.1016/j.ecoenv.2016.02.016]
24. Subramaniam, R., & Ponnusamy, S. K. (2015). Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: Optimization by response surface methodology. Water Resources and Industry, 11, 64-70. [DOI:10.1016/j.wri.2015.07.002]
25. Yao, Y., Bing, H., Feifei, X., & Xiaofeng, C. (2011). Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal, 170(1), 82-89. [DOI:10.1016/j.cej.2011.03.031]
26. Zhang, B., Wu, Y., & Cha, L. (2020). Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: performance, isotherm, and kinetic studies. Journal of Dispersion Science and Technology. [DOI:10.1080/01932691.2018.1561298]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb