year 13, Issue 4 (Winter 2024 2023)                   E.E.R. 2023, 13(4): 194-217 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyghalani S, Ramezanpour H, Yaghmaeian Mahabadi N, Fazeli sangani M. Considering Relationship between Temperature Sensitivity of Soil Organic Carbon Decomposition with some of the Soil Properties and Topographic Indices in Guilan Tea Gardens. E.E.R. 2023; 13 (4) :194-217
URL: http://magazine.hormozgan.ac.ir/article-1-786-en.html
Soil Science Department, Faculty of Agricultural Science, University of Guilan, Rasht , hasramezanpour@yahoo.com
Abstract:   (650 Views)
1- Introduction
Carbon dioxide is one of the main greenhouse gases that affect the world's air temperature. Small changes in the amount of carbon dioxide emissions from the soil have a significant effect on the concentration of this gas in the atmosphere. Soil respiration, the process that emits carbon dioxide from the soil to the atmosphere, is one of the most important carbon flows in the ecosystem and includes two components of heterotrophic respiration (microbial respiration) and autotrophic respiration (root respiration). Researchers measure the rate of soil respiration for every 10 degrees Celsius of temperature change with an index called temperature sensitivity of soil respiration (Q10). The evidence shows that the Q10 value of the soil is not constant and has a negative correlation with temperature and a positive correlation with soil moisture. Also, the amount of soil organic carbon, incubation temperature and the interaction of these two have a significant effect on soil organic carbon decomposition. Accordingly, this research measures the temperature sensitivity (Q10) in soil under tea cultivation and investigates its relationship with some soil chemical characteristics and topographic indices.
2- Methodology
After surveying the east and west tea gardens in Guilan province in the north of Iran, 200 samples were taken at a depth of 0 to 40 cm. The experiments were conducted to determine Organic Carbon, Labile carbon, Bulk density, PH, Cation Exchange Capacity, Microbial Biomass and soil microbial respiration. To measure Q10, two temperature treatments of 25 and 35 °C were used. Elevation, slope and aspect were obtained using a DEM map in ArcGIS 10.5 and other topographical indicators such as wetness index, slope length, relative slope position, catchment area, channel network base level, vertical distance to channel network, convergence index, profile curvature and plan curvature were extracted from DEM map in Saga GIS 2.1.0. Pearson correlation was used to investigate whether there is any relationship between soil temperature sensitivity with other soil properties. Then, principal component analysis (PCA) was performed to determine a minimal data set. All the statistical analyses were done with SPSS 24. Regression charts were also drawn using Excel software.
3- Results
The Q10 values varied from 1.19 to 1.58. This index has the most negative correlation with organic carbon (-0.863), Labile carbon (-0.863), microbial biomass (-0.837), respiration at 25 °C (-0.831) and 35 °C (-0.8) at 1% level and negative correlation with elevation at 5% (-0.159). The principal component analysis showed that the first six components (PC1, PC2, PC3, PC4, PC5 and PC6) have special values of more than one and were able to describe 73% of the total variance. The first main component (PC1) describes 23.125% of the total variance and includes soil organic carbon, labile carbon, microbial biomass and Q10 which have the highest factor loading in this component. The second one (PC2), which explains about 12.99% of the total variance, has the highest factor loading with the vertical distance to the channel network (0.880). The third component (PC3) explains about 12.22% of the total variance. In PC3, clay has the highest factor loading. In the fourth component catchment area, convergence profile and slope length have the highest factor loading, respectively. Finally, the fifth and the sixth components are related to the elevation, slope and plan curvature.
.
4- Discussion & Conclusions
The highest positive factor loading is related to soil organic carbon (0.981). Therefore, the first main component can be "part of the role of organic carbon in microbial biomass, labile carbon and temperature sensitivity". The results showed that Q10 has the highest negative correlation with soil microbial biomass and organic and labile carbon. In other words, the higher the soil organic and microbial biomass carbon, the lower the amount of Q10. Also, the second component can be considered as topographic indicators related to the channel network. Topographic indices can be used very strongly to model making soil organic carbon. The third component is related to clay properties. Several studies have indicated that the amount of clay has a high relationship with cation exchange capacity and it is a good indicator to determine the quality of soil. According to the results, although the correlation between some characteristics obtained from soil topographical analysis can prove the possibility of using them as auxiliary variables in predicting soil organic carbon, this point should be taken into account that other factors also play a role in the process of soil formation and development.
Full-Text [PDF 569 kb]   (103 Downloads)    

Received: 2023/03/17 | Published: 2023/12/31

References
1. Atkin, O. K.; Edwards, E. J.; & B. R. Loveys, 2000. Response of Root Respiration to Changes in Temperature and Its Relevance to Global Warming. New Phytologist, 147, 141e154. [DOI:10.1046/j.1469-8137.2000.00683.x]
2. Banaei, M. H.; Bybordi, M.; Malakouti, M. J.; & A. Moameni, 2005. The Soils of Iran, New Achievements in Perception, Management and Use, Soil and Water Research Institute. 471p. (in Persian)
3. Bartlett, M. S., 1954. A Note On The Multiplying Factors For Various Chi Square Approximations, Journal Of The Royal Statistical Society, 16, 296-298. [DOI:10.1111/j.2517-6161.1954.tb00174.x]
4. Behtari, B.; Jafarian, Z.; & A. Hossenali, 2018. Evaluation Of Temperature Sensitivity Of Soil Organic Matter Decomposition In Relation To Rangeland Management, Element Stoichiometry And Soil Depth, Journal Of Environmental Studies, 44(2). (In Persian).
5. Bond-Lamberty, B., & A. Thomson., (2010). A Global Database Of Soil Respiration Data. Biogeosciences. 7, 1915e1926. [DOI:10.5194/bg-7-1915-2010]
6. Bond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M.; & R. Vargas, 2018. Globally Rising Soil Heterotrophic Respiration Over Recent Decades, Nature, 560, 80e83. [DOI:10.1038/s41586-018-0358-x]
7. Brejda, J. J.; Moorman, T. B.; Karlen, D. L.; & T. H. Dao, 2000. Identification Of Regional Soil Quality Factors And Indicators. Central And Southern High Plains, Soil Science Society Of America Journal, 64, 2115-2124. [DOI:10.2136/sssaj2000.6462115x]
8. Capek, P.; Starke, R.; Hofmockel, K. S.; Bond-Lamberty, B.; & N. Hess, 2019. Apparent Temperature Sensitivity Of Soil Respiration Can Result From Temperature Driven Changes In Microbial Biomass, Soil Biology. Biochemistry, 135, 286e293. [DOI:10.1016/j.soilbio.2019.05.016]
9. Chen, H., & H. Tian., (2005). Does A General Temperature-Dependent Q10 Model Of Soil Respiration Exist At Biome And Global Scale?. Integrative Plant Biology. 47 (11), 1288e1302. [DOI:10.1111/j.1744-7909.2005.00211.x]
10. Chen, B.; Liu, S.; Ge, J.; & J. Chu, 2010. Annual And Seasonal Variations Of Q10 Soil Respiration In The Subalpine Forests Of The Eastern Qinghai-Tibet Plateau, China, Soil Biology And Biochemistry, 42(10), 1735-1742. Relevance To Global Warming. New Phytologist. 147, 141e154. [DOI:10.1016/j.soilbio.2010.06.010]
11. Davidson, E. A., & I. A. Janssens, 2006a. Temperature Sensitivity Of Soil Carbon Decomposition And Feedbacks To Climate Change. Nature. 440 (7081), 165e173. [DOI:10.1038/nature04514]
12. Ding, J.; Chen, L.; Zhang, B.; Liu, L.; Yang, G.; Fang, K.; Chen, Y.; Li, F.; Kou, D.; Ji, C.; Luo, Y.; & Y. Yang, 2016. Linking Temperature Sensitivity Of Soil CO2 Release To Substrate, Environmental, And Microbial Properties Across Alpine Ecosystems, Global Biogeochemistry Cycles, 30(9), 1310e1323. [DOI:10.1002/2015GB005333]
13. Djukic, L.; Zehetner, F.; Tatzber, M.; & M. H. Gerzabek, 2010. Soil Organic-Matter Stocks And Characteristics Along An Alpine Elevation Gradient, Plant Nutrition Soil Science, 173, 30-38. Https://Doi.Org/10.1002/Jpln.200900027. [DOI:10.1002/jpln.200900027]
14. Fallah, Gh.; Asadi, M.; & A. Entezari, 2014. Climatic Zoning Of Guilan Province With Multivariate Methods, Geography And Planning, (54), 235-251. (In Persian).
15. Fóti, S.; Balogh, J.; Herbst, M.; Papp, M.; Koncz, P.; Bartha, S.; Zimmermann, Z.; Komoly, C.; Szabó, G.; Margóczi, K.; Acosta, M.; & Z. Nagy, 2016. Meta-Analysis Of Field Scale Spatial Variability Of Grassland Soil CO2 Efflux: Interaction Of Biotic And Abiotic Drivers, Catena, 143, 78-89. [DOI:10.1016/j.catena.2016.03.034]
16. Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; Van Vuuren, D. P.; & C. Le Qu_Er_E, 2014. Persistent Growth Of CO2 Emissions And Implications For Reaching Climate Targets, Nature. Geoscience, 7, 709e715. [DOI:10.1038/ngeo2248]
17. Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastia, M. T.; Thompson, R.; & et al, 2007. Soil Organic Carbon Storage In Mountain Grasslands Of The Pyrenees, Effects Of Climate And Topography, Biogeochemistry. 82, 279-289. Https://Doi.Org/10.1007/S10533-007-9071-9. [DOI:10.1007/s10533-007-9071-9]
18. Gee, G. W., & J. W. Bauder., (1986). Particle-size analysis. In: Methods of soil Analysis, Part 1, Physical and Mineralogical Methods, Klute A (Ed). Agronomy Monograph No. 9 (2nded). American Society of Agronomy, Madison, WI, 383-411. [DOI:10.2136/sssabookser5.1.2ed.c15]
19. Ghasemi, A., 2004. Considering The Performance Of The Tea Structure Reform Plan In Organizing Tea Industry, Economical Journal, (5), 51, 52. (In Persian) [DOI:10.5979/cha.2004.98_51]
20. Guo, Z.; Adhikari, K.; Chellasamy, M.; Greve, M. B.; Owens, P. R.; & M. H. Greve, 2019. Selection Of Terrain Attributes And Its Scale Dependency On Soil Organic Carbon Prediction, Geoderma, 340, 303-312. [DOI:10.1016/j.geoderma.2019.01.023]
21. Hassink, J.; Chenu, C.; Dalenberg, J. W.; Bolem, J.; & L. A. Bouwman, 1994. Interactions between soil biota, soil organic matter and soil structure. In: 15th World Congress of Soil Science, vol. 49. Acapulco, Mexico, pp. 57-58.
22. Hair, J. F.; Black, B.; Babin, B.; Anderson, R. E.; & R. L. Tatham, 2006. Multivariate Data Analysis (6th Ed.). New Jersy: Prentice Hall.
23. Hezarjaribi, A.; Nosrati Karizak., F.; Abdollahnezhad, K.; & Kh. Ghorbani, 2013. The Prediction Possibility Of Soil Cation Exchange Capacity By Using Of Easily Accessible Soil Parameters, Journal Of Water And Soil, 27(4), 712-719.
24. Hibbard, K.; Law, B.; & M. Reichstein, 2005. An Analysis Of Soil Respiration Across Northern Hemisphere Temperate Ecosystems, Biogeochemistry, 73, 29-70. [DOI:10.1007/s10533-004-2946-0]
25. IPCC., 2013. Summary For Policymakers. In: Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change. Cambridge University Press, Cambridge, United Kingdom And New York, NY, USA, Pp. 9-27.
26. Jia, Y.; Kuzyakov, Y.; Wang, G.; Tan, W.; Zhu, B.; & X. Feng, 2020. Temperature Sensitivity Of Decomposition Of Soil Organic Matter Fractions Increases With Their Turnover Time, Land Degradation And Development, 31(5), 632-645. [DOI:10.1002/ldr.3477]
27. Jiang, L.; He, Z.; Liu, J.; Xing, C.; Gu, X.; Wei, C.; & et al., 2019. Elevation Gradient Altered Soil C, N, And P Stoichiometry Of Pinus Taiwanensis Forest On Daiyun Mountain. Forests, 10, 1089. Https://Doi.Org/10.3390/ F10121089. [DOI:10.3390/f10121089]
28. Jiang, J.; Shi, P. L.; Zong, N.; Fu, G.; Shen, Z. X.; Zhang, X. Z.; & M. H. Song, 2015. Climatic Patterns Modulate Ecosystem And Soil Respiration Responses To Fertilization In An Alpine Meadow On The Tibetan Plateau, China Ecology Research, 30, 3e13. [DOI:10.1007/s11284-014-1199-1]
29. Johnson, D. W.; Cheng, W.; & J. T. Ball, 2000. Effects Of CO2 And Nitrogen Fertilization On Soils Planted With Ponderosa Pine, Plant Soil, 224, 99e113.
30. Kaiser, H., 1974. An Index Of Factorial Simplicity, Psychometrika, 39, 31-36. [DOI:10.1007/BF02291575]
31. Kane, E. S.; Valentine, D. W.; Schuur, E. A. G.; & K. Dutta, 2005. Soil Carbon Stabilization Along Climate And Stand Productivity Gradients In Black Spruce Forests Of Interior Alaska, Canadian Journal Of Forest Research, 35, 2118-2129 [DOI:10.1139/x05-093]
32. Klute, A., 1986. Methods Of Soil Analysis: Physical And Mineralogical Methods. Part1. Second Edition. [DOI:10.2136/sssabookser5.1.2ed]
33. Kirschbaum, M. U., 1995. The Temperature Dependence Of Soil Organic Matter Decomposition, And The Effect Of Global Warming On Soil Organic C Storage, Soil Biology And Biochemistry, 27(6), 753-60. [DOI:10.1016/0038-0717(94)00242-S]
34. Kirschbaum, M. U. F., 2006. The Temperature Dependence Of Organic-Matter Decomposition - Still A Topic Of Debate. Soil Biology, Biochemistry, 38(9), 2510e2518. [DOI:10.1016/j.soilbio.2006.01.030]
35. Kunkel, M. L.; Flores, A. N.; Smith, T. J.; Mcnamara, J. P.; & S. G. Benner, 2011. A Simplified Approach For Estimating Soil Carbon And Nitrogen Stocks In Semi-Arid Complex Terrain, Geoderma, 165(1), 1-11. [DOI:10.1016/j.geoderma.2011.06.011]
36. Kuzyakov, Y., 2006. Sources Of CO2 Efflux From Soil And Review Of Partitioning Methods. Soil Biology, Biochemistry, 38(3), 425e448. [DOI:10.1016/j.soilbio.2005.08.020]
37. Leifeld, J., & J. Fuhrer., (2005). The Temperature Response Of CO2 Production From Bulk Soils And Soil Fractions Is Related To Soil Organic Matter Quality. Biogeochemistry. 75, 433-453. [DOI:10.1007/s10533-005-2237-4]
38. Lomolino, M. V., 2001. Elevation Gradients Of Species-Density: Historical And Prospective Views, Global Ecology And Biogeography, 10, 3-13. [DOI:10.1046/j.1466-822x.2001.00229.x]
39. Luo, S.; Liu, G.; Li, Z.; Hu, C.; Gong, L.; Wang, M.; & et al. 2014. Soil Respiration Along An Altitudinal Gradient In A Subalpine Secondary Forest In China, Iforest, 8, 526-532. [DOI:10.3832/ifor0895-007]
40. Ma, J.; Liu, R.; Li, C.; Fan, L.; Xu, G.; & Y. Li, 2020. Herbaceous Layer Determines The Relationship Between Soil Respiration And Photosynthesis In A Shrub-Dominated Desert Plant Community, Plant Soil, 449, 193-207. Https://Doi.Org/10.1007/S11104-020-04484-6. [DOI:10.1007/s11104-020-04484-6]
41. Min, K.; Lehmeier, C. A.; Ballantyne, F.; Tatarko, A.; & S. A. Billings, 2014. Differential Effects Of Ph On Temperature Sensitivity Of Organic Carbon And Nitrogen Decay, Soil Biology Biochemistry, 76, 193e200. [DOI:10.1016/j.soilbio.2014.05.021]
42. Momeni, M., & A. F. Ghayoumi., (2018). Statistical Analysis With SPSS. 293p. (In Persian)
43. Nadelhoffer, K. J.; Giblin, A. E.; Shaver, G. R.; & A. E. Linkins, 1992. Microbial Processes And Plant Nutrient Availability In Arctic Soils: 281-300. In: Chapin III, F. S.; Jefferies, R. L.; Reynolds, J. F.; Shaver, G. R.; & J. Svoboda, (Eds.). Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. Academic Press, San Diego, California, 468p. [DOI:10.1016/B978-0-12-168250-7.50019-5]
44. Page, A., & et al., 1982. Methods Of Soil Analysis. Chemical And Microbiological Properties. Part2. Second Edition. [DOI:10.2134/agronmonogr9.2.2ed]
45. Peng, Y.; Song, S. Y.; Li, Z. Y.; Li, S.; Chen, G. T.; & et al., 2020. Influences Of Nitrogen Addition And Aboveground Litter-Input Manipulations On Soil Respiration And Biochemical Properties In A Subtropical Forest, Soil Biology And Biochemistry, 142, 107694. DOI 10.1016/J.Soilbio.2019.107694. [DOI:10.1016/j.soilbio.2019.107694]
46. Prietzel, J.; Zimmermann, L.; Schubert, A.; & D. Christophel, 2016. Organic Matter Losses In German Alps Forest Soils Since The 1970s Most Likely Caused By Warming, Nature Geoscience, 1-8, Https://Doi.Org/10.1038/NGEO2732. [DOI:10.1038/ngeo2732]
47. Qiu, X.; Luè, M. K.; Huang, J. X.; Li, W.; Zhao, B. J.; Zhang, H.; & et al., 2016. Characteristics Of Soil Organic Carbon Mineralization At Different Temperatures In Severely Eroded Red Soil, Chinese Journal Of Plant Ecology, 40(3), 236-245. [DOI:10.17521/cjpe.2015.0364]
48. Rafiee, F.; Habashi, H.; Rahmani, R.; & Kh. Sagheb-Talebi., 2019. Temperature Sensitivity Of Soil Carbon Dioxide Efflux In Beech-Hornbeam Stand (Case Study: Shast-Kalateh Forest, Gorgan), Iranian Journal Of Forest And Poplar Research, 27(1). (In Persian)
49. Raich, J. W.; Potter, C. S.; & D. Bhagawati, 2002. Interannual Variability In Global Soil Respiration, 1980e94, Global Change Biol, 8(8), 800e812. [DOI:10.1046/j.1365-2486.2002.00511.x]
50. Raich, J. W., & W. H. Schlesinger., (1992). The Global Carbon Dioxide Flux In Soil Respiration And Its Relationship To Vegetation And Climate. Tellus B. 44(2), 81-99. [DOI:10.3402/tellusb.v44i2.15428]
51. Ritchie, J. C.; Mccarty, G. W.; Venteris, E. R.; & T. C. Kaspar, 2007. Soil And Soil Organic Carbon Redistribution On The Landscape, Geomorphology, 89(1-2), 163-171. [DOI:10.1016/j.geomorph.2006.07.021]
52. Rodeghiero, M., & A. Cescatti., (2005). Main Determinants Of Forest Soil Respiration Along An Elevation/Temperature Gradient In The Italian Alps. Global Change Biology. 11, 1024-1041. Https://Doi.Org/10.1111/J.1365-2486.2005.00963.X. [DOI:10.1111/j.1365-2486.2005.00963.x]
53. Schlesinger, W. H., & J. A. Andrews., (2000). Soil Respiration And The Global Carbon Cycle. Biogeochemistry. 48, 7-20. [DOI:10.1023/A:1006247623877]
54. Sheidai, E.; Sepehry, A.; Barani, H.; Motamedi, J.; & F. Shahbz, 2019. Establishing A Suitable Soil Quality Index For Semi-Arid Rangeland Ecosystems In Northwest Of Iran, Journal Of Soil Science And Plant Nutrition, Https://Doi.Org/10.1007/S42729-019-00065-4. [DOI:10.1007/s42729-019-00065-4]
55. Shedayi, A. A.; Xu, M.; Naseer, L.; & B. Khan, 2016. Altitudinal Gradients Of Soil And Vegetation Carbon And Nitrogen In A High Altitude Nature Reserve Of Karakoram Ranges, Springer Plus, 5, 320. Https://Doi.Org/10. 1186/S40064-016-1935-9 PMID: 27066349 PLOS ONE Soil Respiration Variation Along An Altitudinal Gradient In The Italian Alps PLOS.
56. Shi, Z.; Wang, J. S.; He, R.; Fang, Y. H.; Xu, Z. K.; Quan, W.; & et al., 2008. Soil Respiration And Its Regulating Factor Along An Elevation Gradient In Wuyi Mountain Of Southeast China, Chinese Journal Ecology, 27(4), 563-568.
57. Sparks, D., 1996. Methods Of Soil Analysis. Part3. Chemical Methods. SSSA Book Series No.5. Soil. Science. Society. America. [DOI:10.2136/sssabookser5.3]
58. Statistical Yearbook Of Iran., 2020. Land And Climate. National Meteorological Organization, General Department Of Information And Communication Technology. (In Persian). Http://Salnameh.Sci.Org.Ir
59. Subke, J. A., & M. Bahn., (2010). On The 'Temperature Sensitivity' Of Soil Respiration: Can We Use The Immeasurable To Predict The Unknown?, Soil Biology And Biochemistry, 42(9), 1653-1656. [DOI:10.1016/j.soilbio.2010.05.026]
60. Tian, Q.; He, H.; Cheng, W.; Bai, Z.; Wang, Y.; & X. Zhan, 2016. Factors Controlling Soil Organic Carbon Stability Along A Temperate Forest Altitudinal Gradient, Scientific Report, 6, 18783. Https://Doi.Org/10.1038/Srep18783 PMID: 26733344. [DOI:10.1038/srep18783]
61. Tian, Z.; Jia, X.; Liu, T.; Ma, E.; Xue L.; Hu, Y.; & Q. Zheng, 2022. Seasonal Change In Soil Respiration With An Elevation Gradient In Abies Nephrolepis Forest In North China, Phyton International Journal Of Experimental Botany, 91, 7. [DOI:10.32604/phyton.2022.020329]
62. Walkley, A., & I. A. Black., (1934). An Examination Of Degtjareff Method For Determining Soil Organic Matter, And A Proposed Modification Of The Chromic Acid Titration Method. Soil Science. 37, 29-38. [DOI:10.1097/00010694-193401000-00003]
63. Wang, Q.; Zhao, X.; Chen, L.; Yang, Q.; Chen, S.; & W. Zhang, 2018a. Global Synthesis Of Temperature Sensitivity Of Soil Organic Carbon Decomposition: Latitudinal Patterns And Mechanisms, Functional Ecology, 33, 514e523. [DOI:10.1111/1365-2435.13256]
64. Wang, Q.; Liu, S.; & P. Tian, 2018b. Carbon Quality And Soil Microbial Property Control The Latitudinal Pattern In Temperature Sensitivity Of Soil Microbial Respiration Across Chinese Forest Ecosystems, Global Change Biology, 24, 2841e2849. [DOI:10.1111/gcb.14105]
65. Weil, R. R.; Islam, K. R.; Stine, M. A.; Gruver, J. B.; & S. E. Samson-Liebig, 2003. Estimating Active Carbon For Soil Quality Assessment: A Simplified Method For Laboratory And Field Use, American Journal Of Alternative Agriculture, 18, 3-17. [DOI:10.1079/AJAA2003003]
66. Xu, Z.; Tang, S.; Xiong, L.; Yang, W.; Yin, H.; Tu, L.; Wu, F.; Chen, L.; & B. Tan, 2015. Temperature Sensitivity Of Soil Respiration In China's Forest Ecosystems: Patterns And Controls, Applied. Soil Ecology, 93, 105e110. [DOI:10.1016/j.apsoil.2015.04.008]
67. Yu, H.; Sui, Y.; Chen, Y.; Bao, T.; & X. Jiao, 2022. Soil Organic Carbon Mineralization And Its Temperature Sensitivity Under Different Substrate Levels In The Mollisols Of Northeast China, Life, 12, 712. [DOI:10.3390/life12050712]
68. Zhang, Z. S.; Dong, X. J.; Xu, B. X.; Chen, Y. L.; Zhao, Y.; Gao, Y. H.; & et al., 2015. Soil Respiration Sensitivities To Water And Temperature In A Revegetated Desert, Journal Of Geophysical Research. Biogeoscience, 120, 773-787. [DOI:10.1002/2014JG002805]
69. Zheng, Z. M.; Yu, G. R.; Fu, Y. L.; Wang, Y. S.; Sun, X. M.; & Y. H. Wang, 2009. Temperature Sensitivity Of Soil Respiration Is Affected By Prevailing Climatic Conditions And Soil Organic Carbon Content: A Trans-China Based Case Study, Soil Biology And Biochemistry, 41(7), 1531-1540. [DOI:10.1016/j.soilbio.2009.04.013]
70. Zhu, R.; Zheng, Z.; Li, T.; Zhang, X.; He, Sh.; Wang, Y.; Liu, T.; & W. Li, 2017. Dynamics Of Soil Organic Carbon Mineralization In Tea Plantations Converted From Farmland At Western Sichuan, China. Plos, One, 12(9), E0185271. [DOI:10.1371/journal.pone.0185271]
71. Zimmermann, M.; Meir, P.; Bird, M. I.; Malhi, Y.; & A. J. Q. Ccahuana, 2010. Temporal Variation And Climate Dependence Of Soil Respiration And Its Components Along A 3000m Altitudinal Tropical Forest Gradient, Global Biogeochemistry Cycle, 24, GB4012. Https://Doi.Org/10.1029/2010GB003787. [DOI:10.1029/2010GB003787]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb