1. Afshar Ardekani, A., Sabzevari, T. (2020). Effects of hillslope geometry on soil moisture deficit and base flow using an excess saturation model. Acta Geophys. 68, 773-782. https://doi:10.1007/s11600-020-00428-x [
DOI:10.1007/s11600-020-00428-x]
2. Alexander, C., Deak, B., Heilmeier, H., (2016). Micro-topography driven vegetation patterns in open mosaic landscapes. Ecological Indicators. 60, 906-920. https://doi:10.1016/j.ecolind.2015.08.030 [
DOI:10.1016/j.ecolind.2015.08.030]
3. Bader, M.Y., Ruijten, J.J.A., (2008). A topography-based model of forest cover at the alpine tree line in the tropical Andes. Journal of Biogeography. 35:711-723. https://doi:10.1111/j.1365-2699. 2007.01818.x [
DOI:10.1111/j.1365-2699.2007.01818.x]
4. Balazs, B., Bíro, T., Gareth, Dyke, Singh, S.K. (2018). Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrological Sciences Journal. 63(2): 269-284. [
DOI:10.1080/02626667.2018.1425802]
5. Ballerine, C. (2017). Topographic Wetness Index Urban Flooding Awareness Act Action Support. Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 22 p. http://hdl.handle.net/2142/98495
6. Barling, R. D., Moore, I. D., & Grayson, R. B. (1994). A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resources Research, 30, 1029-1044. [
DOI:10.1029/93WR03346]
7. Beven, K.J., Kirkby, M.J. (1979). A physically based variable contributing area model of basin hydrology. Hydrology Science Bulletin. 24: 43-69. [
DOI:10.1080/02626667909491834]
8. Buchanan, B.P., Fleming, M., Schneider, R.L., Richards, B.K., Archibald, J., Qiu, Z., Walter, M.T., (2014). Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrology and Earth System Sciences. 18 (8), 3279-3299.
https://doi.org/10.5194/hess-18-3279-2014 [
DOI:10.5194/hess-18-3279-2014, 2014.]
9. Cairns, D.M., (2001). A comparison of methods for predicting vegetation type. Plant Ecology, 156:3-18. https://doi:10.1023/A:1011975321668 [
DOI:10.1023/A:1011975321668]
10. Calogero Schillaci1, Andreas Braun1 & Jan Kropacek., (2015). Terrain analysis and landform recognition. Geomorphological Techniques,4. 2 :1-18. https://doi:10.13140/RG.2.1.3895.2802
11. Chaplot, V., Walter, C., (2003). Subsurface topography to enhance the prediction of the spatial distribution of soil wetness. Hydrological Processes. 17 (13), 2567-2580. https://doi:10.5772/intechopen.86109 [
DOI:10.5772/intechopen.86109]
12. Chen, C.Y., Chen, L.K., Yu, F.C., Lin, S.C., Lin, Y.C., Lee, C.L., Wang, Y.T., and Cheung, K.W. (2008). Characteristics analysis for the flash flood-induced debris flows. Journal of Natural Hazards. 47(1): 245-261. https://doi:10.1007/s11069-008-9217-7 [
DOI:10.1007/s11069-008-9217-7]
13. DaSilva, J.M.F., Santos, L.J.C. & Oka-Fiori, C. (2019). Spatial correlation analysis between topographic parameters for defining the geomorphometric diversity index: application in the environmental protection area of the Serra da Esperança (state of Paraná, Brazil). Environmental Earth Sciences, 78(12):356. https://doi:10.1007/s12665-019-8357-2 [
DOI:10.1007/s12665-019-8357-2]
14. Dirnbock, T., Hobbs, R.J., Lambeck, R.J., Caccetta, P.A., (2002). Vegetation distribution in relation to topographically driven processes in south western Australia. Applied Vegetation Science, 5:147-158. https://doi:10.1111/j.1654-109X.2002.tb00544.x [
DOI:10.1111/j.1654-109X.2002.tb00544.x]
15. Dobrowski, S.Z., Safford, H.D., Cheng, Y.B., Ustin, S.L., (2008). Mapping mountain vegetation using species distribution modeling, imagebased texture analysis, and object-based classification. Applied Vegetation Science, 11:499-508. https://doi:10.3170/2008-7-18560 [
DOI:10.3170/2008-7-18560]
16. Endreny, T.A., Wood, E.F. (2003). Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science. 17(7): 699-713. https://doi:10.1080/1365881031000135483 [
DOI:10.1080/1365881031000135483]
17. Esper Angillieri, M.Y., Perucca, L.P., (2014), Geomorphology and morphometry of the de La Flecha river basin, San Juan, Argentina: Environmental Earth Sciences, 72, 3227-3237. https://doi:10.1007/s12665-014-3227-4. [
DOI:10.1007/s12665-014-3227-4]
18. Evans, J.S., Cushman, S.A., (2009). Gradient modeling of conifer species using random forests. Landscape Ecology, 24:673-683. https://doi:10.1007/s10980-009-9341-0 [
DOI:10.1007/s10980-009-9341-0]
19. Fitterer, J.L., Nelson, T.A., Coops, N.C., Wulder, M.A., (2012). Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices. Ecological Indicators, 20:151-162. https://doi:10.3390/d5020352 [
DOI:10.3390/d5020352]
20. Franklin, J., (2002). Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral. Applied Vegetation Science, 5(1):135 - 146. https://doi:10.1111/j.1654-109X.2002.tb00543.x [
DOI:10.1111/j.1654-109X.2002.tb00543.x]
21. Gessler P.E., Chadwick O.A., Chamran F., Althouse L., and Holmes K. (2000). Modeling soil landscape and ecosystem properties using terrain attributes. Soil Science Society of American Journal, 64: 2046- 2056. [
DOI:10.2136/sssaj2000.6462046x]
22. Gruber, S. & Peckham, S. (2008). Land-surface parameters and objects in hydrology. In: Hengl, T. & Reuter, H.I. Geomorphometry: concepts, software, applications. pp. 171-194. Elsevier, Amsterdam, NL. https://doi:10.1016/S0166-2481(08)00007-X [
DOI:10.1016/S0166-2481(08)00007-X]
23. Gumindoga, W., Rwasokab, D.T. and Murwirac, A. (2011). Simulation of streamflow using TOPMODEL in the Upper Save River catchment of Zimbabwe. Physics and Chemistry of the Earth, 36, 806-813. https://doi:10.1016/j.pce.2011.07.054 [
DOI:10.1016/j.pce.2011.07.054]
24. Guntner, A., Uhlenbrook, S., Leibundgut, C., Siebert, J., (1999). Estimation of saturation excess overland flow areas: comparison of topographic index calculations with field mapping. Int. Assoc. Water Resources Research. 254, 203-210 IAHS Publication. https://doi:10.1029/2003WR002864 [
DOI:10.1029/2003WR002864]
25. Guo, P.T., Liu, H.B., and Wu, W. (2019). Spatial prediction of soil organic matter using terrain attributes in a hilly area. International Conference on Environmental Science and Information Application Technology. Wuhan, China. 3: 759-762. https://doi:10.1109/ESIAT.2009.330 [
DOI:10.1109/ESIAT.2009.330]
26. Haring, T., Reger, B., Ewald, J., Hothorn, T., Schröder, B., (2019). Predicting Ellenberg's soil moisture indicator value in the Bavarian Alps using additive georegression. Applied Vegetation Science. 16 (1), 110-121. https://doi:10.1111/j.1654-109X.2012.01210.x [
DOI:10.1111/j.1654-109X.2012.01210.x]
27. Iverson, L.R., Dale, M.E., Scott, C.T. & Prasad, A. (1997). A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landscape Ecology, 12: 331-348. [
DOI:10.1023/A:1007989813501]
28. Jeziorska, J., Niedzielski, T. (2018). Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka river basin (SW Poland). Acta Geophys. 66, 203-222. [
DOI:10.1007/s11600-018-0121-6]
29. Kadirhodjaev, A., Kadavi, P.R., Lee, C. (2018). Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: a case study of Mingchukur, Uzbekistan. Geosciences Journal, 22, 1053-1067. https://doi:10.1007/s12303-018-0052-x [
DOI:10.1007/s12303-018-0052-x]
30. Kaliraj, S., Chandrasekar, N., Magesh, N.S. (2015). Morphometric analysis of the River Thamirabarani subbasin in Kanyakumari district, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Sciences, 73, 7375-7401. https://doi:10.1007/s12665-014-3914-1 [
DOI:10.1007/s12665-014-3914-1]
31. Kopecky, M., Cizkova, S. (2010). Using topographic wetness index in vegetation ecology: does the algorithm matter. Applied Vegetation Science, 13: 450-459. [
DOI:10.1111/j.1654-109X.2010.01083.x]
32. Liu, J.; Engel, B.A.; Wang, Y.; Wu, Y.; Zhang, Z.; Zhang, M. (2019). Runoff Response to Soil Moisture and Micro-Topographic Structure on the Plot Scale. Scientific Reports. 9, 2532. [
DOI:10.1038/s41598-019-39409-6]
33. Luca, C., Si, B.C., and Farrell, R.E. (2007). Upslope length improves spatial estimation of soil organic carbon content. Canada Journal of Soil Science. 87: 291-300. https://doi:10.4141/CJSS06012 [
DOI:10.4141/CJSS06012]
34. Marques da Silva, J. R., & Alexandre, C. (2005). Spatial variability of irrigated corn yield in relation to field topography and soil chemical characteristics. Precision Agriculture, 6, 453-466. [
DOI:10.1007/s11119-005-3679-3]
35. Mattivi, P., Franci, F., Lambertini, A. (2019). TWI computation: a comparison of different GISs. Open geospatial data, 4, 6. [
DOI:10.1186/s40965-019-0066-y]
36. McKenzie, N.J., Ryan, P.J., (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89 (1), 67-94. [
DOI:10.1016/S0016-7061(98)00137-2]
37. Merheb, M., Moussa, R.., Abdallah, C., Colin, F., Perrin, C., Baghdadi, N. (2016) Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61:14, 2520-2539. [
DOI:10.1080/02626667.2016.1140174]
38. Mlynski, D.; Wałega, A.; Petroselli, A.; Tauro, F.; Cebulska, M. (2019). Estimating Maximum Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere. 10, 43. [
DOI:10.3390/atmos10020043]
39. Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T., Odgaard, M.V., Nygaard, B., Svenning, J.C., (2013). Topographically controlled soil moisture is the primary driver of local vegetation patterns across a lowland region. Ecosphere, 4 (7), 1-26. https://doi:10.1890/ES13-00134.1 [
DOI:10.1890/ES13-00134.1]
40. Moore, I., Gessler, P., Nielsen, G., & Peterson, G. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443-452. https://doi:10.2136/sssaj1993.572NPb [
DOI:10.2136/sssaj1993.572NPb]
41. Moore, I.D., and Grayson, R.B. (1991). Landson. Digital terrain Modeling: A review of hydrological, Geomorphological and Biological application. Modelling in Hydrology. 5: 3-30. [
DOI:10.1002/hyp.3360050103]
42. Muad, A.M., Foody, G.M., (2012). Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. Journal of Applied Earth Observation Geo information. (12) 1: 79-91. [
DOI:10.1016/j.jag.2011.06.002]
43. O'Loughlin E. M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research journal. 22(5): 794-804. [
DOI:10.1029/WR022i005p00794]
44. Pan, F., Peters-Lidard, C.D., Sale, M.J., and King, A.W. (2004). A comparison of geographical information system-based algorithms for computing the TOPMODEL topographic index. Water Resources Research. 40: 1-11. https://doi:10.1029/2004WR003069 [
DOI:10.1029/2004WR003069]
45. Parolo, G., Rossi, G., Ferrarini, A., (2008). Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology, 45(5):1410-1418. https://doi:10.1111/j.1365-2664.2008.01516.x [
DOI:10.1111/j.1365-2664.2008.01516.x]
46. Petroselli, A., Vessella, F., Cavagnuolo, L., Piovesan, G., Schirone, B. (2013). Ecological behavior of Quercus suber and Quercus ilex inferred by topographic wetness index (TWI). Trees, 27:1201-1215. https://doi:10.1007/s00468-013-0869-x [
DOI:10.1007/s00468-013-0869-x]
47. Petroselli, A.; Grimaldi, S. (2018). Design hydrograph estimation in small and fully ungauged basins: A preliminary assessment of the EBA4SUB framework. Flood risk management. 2018, 8, 1-14. DOI:10.1111/jfr3.12193 [
DOI:10.1111/jfr3.12193]
48. Pielech, R., Anioł-Kwiatkowska, J., Szczęśniak, E., (2015). Landscape-scale factors driving plant species composition in mountain streamside and spring riparian forests. Forest Ecology and Management. 347, 217-227. [
DOI:10.1016/j.foreco.2015.03.038]
49. Prancevic, J.P.; Kirchner, J.W. (2019). Topographic Controls on the Extension and Retraction of Flowing Streams. Geophysical Research Letters. 46, 2084-2092. [
DOI:10.1029/2018GL081799]
50. Qin, C.Z., Zhu, A.X., Pei, T., Li, B.L., Scholten, T., Behrens, T., and Zhou, C.H. (2011). An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture. 12: 32-43. DOI:10.1007/s11119-009-9152-y [
DOI:10.1007/s11119-009-9152-y]
51. Qiu, Z., Pennock, A., Giri, S. (2017). Assessing Soil Moisture Patterns Using a Soil Topographic Index in a Humid Region. Water Resour Manage, 31, 2243-2255. DOI: 10.1007/s11269-017-1640-7 [
DOI:10.1007/s11269-017-1640-7]
52. Raduła, M.W., Szymura, T.H., Szymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg's indicator values. Ecological Indicators, 85: 172-179. [
DOI:10.1016/j.ecolind.2017.10.011]
53. Rinderer, M., van Meerveld, H. J. & Seibert, J., (2014). Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid, Water Resources Research. 50, 7. 6067-6080. [
DOI:10.1002/2013WR015009]
54. Sabzevari T, Noroozpour S, Pishvaei M (2015) Effects of geometry on runoff time characteristics and time-area histogram of hillslopes. Journal of Hydrology. 531:638-648. https://doi:10.1016/j.jhydrol.2015.10.063 [
DOI:10.1016/j.jhydrol.2015.10.063]
55. Schmidt, S., Tresch, S., Meusburger, K., (2019). Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX, 6, 219-229. [
DOI:10.1016/j.mex.2019.01.004]
56. Shanableh, A.; Al-Ruzouq, R.; Yilmaz, A.; Siddique, M.; Merabtene, T.; Imteaz, M. (2018). Effects of Land Cover Change on Urban Floods and Rainwater Harvesting: A Case Study in Sharjah. UAE. Water, 10(5), 631; [
DOI:10.3390/w10050631]
57. Si, C.B. and Farrell, R.E. (2004). Scale-dependent relationship between wheat yield and topographic indices: A wavelet approach. Soil Science Society of American Journal, 68: 577-587. DOI: 10.1080/01431160600794621 [
DOI:10.1080/01431160600794621]
58. Sorensen, R., Zinko, U., and Seibert, J. (2005). On the calculation of the topographic wetness index: evaluation of different methods based on field observation. Hydrology and Earth System Sciences. 10: 101-112. [
DOI:10.5194/hess-10-101-2006]
59. Svetlitchnyi, A.A., Plotnitskiy, S.V., and Stepovaya, O.Y. (2003). Spatial distribution of soil moisture content within catchments and its modeling on the basis topographic data. Journal of Hydrology. 277: 50-60. DOI:10.1016/S0022-1694(03)00083-0 [
DOI:10.1016/S0022-1694(03)00083-0]
60. Taverna, K., Urban, D.L., McDonald, R.I., (2005). Modeling landscape vegetation pattern in response to historic land-use: a hypothesisdriven approach for the North Carolina Piedmont, USA. Landscape Ecology, 20:689-702. [
DOI:10.1007/s10980-004-5652-3]
61. Troch P. A. van Loon A. and Hilberts H. (2002). Analytical solutions to a hillslope storage kinematic wave equation for subsurface flow. Advance in Water Resource journal. 25(6): 637- 649. https://doi:10.1016/S0309-1708(02)00017-9 [
DOI:10.1016/S0309-1708(02)00017-9]
62. Van Niel, K.P., Laffan, S.W., Lees, B.G., (2004). Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science. 15:747-756. https://doi:10.1111/j.1654-1103.2004.tb02317.x [
DOI:10.1111/j.1654-1103.2004.tb02317.x]
63. Wang G. Hapuarachchi H. A. P. Takeuchi K. and Ishidaira H. (2010). Grid-based distribution model for simulating runoff and soil erosion from a large-scale river basin. Hydrologic Process. 24: 641-653. https://doi:10.1002/hyp.7558 [
DOI:10.1002/hyp.7558]
64. Wang, Q.M., Wang, D.F., (2011). Sub-pixel mapping based on sub-pixel to sub-pixel spatial attraction model. In: Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS. 593-596. https://doi:10.1109/IGARSS.2011.6049198 [
DOI:10.1109/IGARSS.2011.6049198]
65. Welsch, D.L., Kroll, C.N., Mc Donnell, J.J., and Burns, D.A. (2001). Topographic controls on the chemistry of subsurface stormflow. Hydrological Processes. 15: 10. 1925-1938. https://doi:10.1002/hyp.247 [
DOI:10.1002/hyp.247]
66. Western, A.W, (2004). Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology. 286: 1-4. 113-134. [
DOI:10.1016/j.jhydrol.2003.09.014]
67. Western, A.W., Grayson, R.B., Blöschl, G., Willgoose, G.R., McMahon, T.A., (1999). Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research. 35 (3), 797-810. [
DOI:10.1029/1998WR900065]
68. Whelan, M.J., and Gandolfi, C. (2002). Modelling of spatial controls on denitrification at the landscape scale. Hydrology Journal. 16: 7. 1437-1450. [
DOI:10.1002/hyp.354]
69. Wolock, D. M., and G. J. McCabe. (1995). Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resources, 31(5):1315-1324. [
DOI:10.1029/95WR00471]
70. Wysocki, D.A., Schoeneberger, P.J., LaGarry, H.E., (2000). Geomorphology of soil landscapes. In: Sumner, M. (Ed.), CRC handbook of soil science. CSC Press, New York, pp. E1-E39.
71. Xue, L., Yang, F., Yang, C. (2018). Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China. Scientific Reports, 8, 452. [
DOI:10.1038/s41598-017-18982-8]
72. Yousefzadeh, A., Zeynali, B., Valizadeh Kamran, Kh., Asghari Sar Eskanrood, S. (2019). The Extraction of Flood Potential of Simineh River Basin Applying Satellite Images, Topographic Wetness Index and Morphological Features. Geography and Sustainability of Environment, 9 (3), 49-61. doi: 10.22126/GES.2019.4294.2071
73. Zhao, B., Dai, Q., Han, D. (2020). Application of hydrological model simulations in landslide predictions. Landslides, 17, 877-891. [
DOI:10.1007/s10346-019-01296-3]
74. Zhu, A.-X., Yang, L., Li, B.-L., Qin, C.-Z., Pei, T., & Liu, B.-Y. (2009). Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma. 155(3-4):164-174. https://doi:10.1016/j.geoderma.2009.05.024.3 [
DOI:10.1016/j.geoderma.2009.05.024]
75. Zhu, H.D., Shi, Z.H., Fang, N.F., Wu, G.L., Guo, Z.L., Zhang, Y., (2014). Soil moisture response to environmental factors following precipitation events in a small catchment. Catena, 120, 73-78. https://doi:10.1016/j.catena.2014.04.003 [
DOI:10.1016/j.catena.2014.04.003]