1. Ahmadaali, K.; Eskandari Damaneh, H.; Ababaei, B.; & H. Eskandari Damaneh, 2021. Impacts of droughts on rainfall use efficiency in different climatic zones and land uses in Iran, Journal of Arabian Geosciences, 14, 1-15. [
DOI:10.1007/s12517-020-06389-1]
2. Albarakat, R., & V. Lakshmi., (2019). Monitoring Dust Storms in Iraq Using Satellite Data. Sensors. 19(17), 3687. [
DOI:10.3390/s19173687]
3. Arjamand, M.; Rashki, A.; & H. Sargazi, 2018. Temporal and spatial monitoring of dust phenomenon using satellite data in southeast Iran, with emphasis on Jazmurian region, Scientific-Research Quarterly of Geographic Information "Sephehr", 27(106), 153-168. (in Persian).
4. Bertrand, T.; Kahre, M.; Urata, R.; Mattaanen, A.; Montmessin, F.; Wilson, J.; & M. Wolff, 2022. Impact of the coagulation of dust particles on Mars during the 2018 global dust storm, Icarus, 115239. [
DOI:10.1016/j.icarus.2022.115239]
5. Chubin, B.; Sajidi Hosseini, F.; Rahmati, O.; Mehdizadeh Yushanloui, M.; & M. Jalali, 2022. Examining temporal and spatial changes in the number of days of dust occurrence in West Azarbaijan province, determining the influencing factors and identifying the origin, Journal of Wilderness Management, 10 (2), 71-86. (in Persian).
6. Dargahian, F., & S. Lotfi Nasab Asl., (2020). Identifying the trend of changes in the climatic areas of the watersheds leading to the dust centers of Khuzestan province (Karun Bozor, Karkheh and Zohra-Jarhari). Iran Pasture and Desert Research. 27(2), 320-300. (in Persian).
7. Ebrahimi-Khusfi, Z.; Nafarzadegan, A.; & F. Dargahian, 2021. Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques, Ecological Indicators, 125, 107499. [
DOI:10.1016/j.ecolind.2021.107499]
8. 8. Eskandari Damaneh, H.; Eskandari Damaneh, H.; Khosravi, H.; & H. Gholami, 2019. Drought analysis and monitoring using NDVI vegetation cover index (Case study: West Basin of Jazmurian wetland), Marta Research Journal, 13 (3), 475-461. (in Persian).
9. Eskandari Damaneh, H.; Jafari, M.; Eskandari Damaneh, H.; Behnia, M.; Khoorani, A.; & JP. Tiefenbacher, 2021. Testing possible scenariobased responses of vegetation under expected climatic changes in Khuzestan Province, Journal of Air, Soil and Water Research, 14, 13117862212110332. [
DOI:10.1177/11786221211013332]
10. Eskandari Dameneh, H.; Gholami, H.; & M. Telfer, 2021. Desertification of Iran in the early twenty-first century: assessment using climate and vegetation indices, Journal of Scienfific Report, 11, 20548. [
DOI:10.1038/s41598-021-99636-8]
11. Gherboudj, I.; Beegum, S.; & H. Ghedira, 2017. Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential, Earth-science reviews, 165, 342-355. [
DOI:10.1016/j.earscirev.2016.12.010]
12. Khusfi, Z.; Khosroshahi, M.; Roustaei, F.; & M. Mirakbari, 2020. Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran, Geoderma, 365, 114225. [
DOI:10.1016/j.geoderma.2020.114225]
13. Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.; & M. Shamimuzzaman, 2021. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis, Theoretical and Applied Climatology, 143(1), 823-841. [
DOI:10.1007/s00704-020-03448-1]
14. Mann, H., 1994. Nonparametric tests against trend, Econometrica: Journal of the econometric society, 245-259. [
DOI:10.2307/1907187]
15. Marchese, F.; Sannazzaro, F.; Falconieri, A.; Filizzola, C.; Pergola, N.; & V. Tramutoli, 2017. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data, Remote Sensing, 9(6), 537. [
DOI:10.3390/rs9060537]
16. Mehri Cherodeh, M., & S. Mohammadi Nematabad., (2020). Investigating the factors affecting the dust phenomenon in Iran and providing solutions and suggestions. The fifth international conference on modern accounting, management and human sciences research in the third millennium. (in Persian).
17. Middleton, N., 2019. Variability and trends in dust storm frequency on decadal timescales: climatic drivers and human impacts, Geosciences, 9 (6), 261. [
DOI:10.3390/geosciences9060261]
18. Mir, A.; Maleki, S.; & N. Middleton, 2021. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century, Science of The Total Environment, 757, 143952. [
DOI:10.1016/j.scitotenv.2020.143952]
19. Mirakbari, M., & Z. Ebrahimi Khousfi., (2020). Investigating the trend of temporal and spatial changes of atmospheric suspended particles using the optical depth index of aerosols in southeast Iran. Journal of Remote Sensing and Geographical Information System in Natural Resources. 11(3), 105-87. (in Persian).
20. Mohammadpour, K.; Saligheh, M.; Darvishi Balorani, A.; & T. Rezaei, 2020. Analysis and comparison of satelli te and simulated AOD productions in the analysis of dust in western Iran (2000-2018), Journal of Spatial Analysis of Environmental Hazards, 7(1), 15-32. (in Persian). [
DOI:10.29252/jsaeh.7.1.3]
21. O'Loingsigh, T.; McTainsh, E.; Tews, C.; Strong, J.; Leys, Shinkfield, P.; & N. Tapper, 2014. The Dust Storm Index (DSI): a method for monitoring broadscale wind erosion using meteorological records, Aeolian Research, 12, 29-40. [
DOI:10.1016/j.aeolia.2013.10.004]
22. Qavidel Rahimi, Y.; Farajzadeh, M.; & I. Leshanizand, 2018. Analysis of temporal changes of Khorram Abad dust storms, Applied Research in Geographical Sciences, 18(21), 102-87. (in Persian). [
DOI:10.29252/jgs.18.51.87]
23. Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; & H. Che, 2018. Characteristic and driving factors of aerosol optical depth over mainland china during 1980-2017, Journal of Remote Sensing, 10, 1064. [
DOI:10.3390/rs10071064]
24. Rashki, A.; Middleton, N.; & A. Goudie, 2021. Dust storms in Iran-Distribution, causes, frequencies and impacts, Aeolian Research, 48, 100655. [
DOI:10.1016/j.aeolia.2020.100655]
25. Saidifar, Z.; Khosrowshahi, M.; Gohardoost, A.; Ebrahimi Khousfi, Z.; Lotfi Nasab Asl, S.; & F. Dargahian, 2020. Investigating the origin and spatial spread of high dust concentrations and its synoptic analysis in the Gakhkhoni area, Journal of Remote Sensing and Geographical Information System in Natural Resources, 11 (4), 47-64. (in Persian).
26. Savari, M.; Eskandari Damaneh, H.; & H. Eskandari Damaneh, 2021. Factors influencing farmers' management behaviors toward coping with drought: evidence from Iran, Journal of Environmental Planning and Management, 64(11), 2021-2046. [
DOI:10.1080/09640568.2020.1855128]
27. Sen, P. K., 1986. Estimates of the regression coefficient based on Kendall's tau, Journal of the American Statistical Association, 63(324), 1379-89. [
DOI:10.1080/01621459.1968.10480934]
28. Sharafi, S., & N. Mir Karim., (2020). Investigating trend changes of annual mean temperature and precipitation in Iran. Journal of Arabian Geosciences. 13, 759-765. [
DOI:10.1007/s12517-020-05695-y]
29. Soleimani Sardo, F.; Mutkan, A. A.; & S. Karami, 2022. Forecasting the movement path of dust particles using HYSPLIT and WRF-Chem models in Jazmurian basin, Climatology Research Journal, 13(51), 1-13. (in Persian). [
DOI:10.1038/s41598-023-34318-1]
30. Song, H.; Zhang, K.; Piao, Sh.; & Sh. Wan, 2016. Spatial and temporal variations of spring dust emissions in northern China over the last 30 years, Atmospheric Environment, 126, 117-127. [
DOI:10.1016/j.atmosenv.2015.11.052]
31. Temski, E.; Khurani, A.; Darvishi Belorani, A.; & A, Nohagar, 2016. Monitoring and forecasting the occurrence of dust storms using remote sensing data, spatial information system and ground data based on the investigation of changes in vegetation cover and climatic elements (case study: south and southeast of Iran), Iranian Remote Sensing and GIS Journal, 7(4), 27-44. (in Persian).
32. Wang, D.; Zhang, F.; Yang, S.; Xia, N.; & M. Ariken, 2020. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS), Journal of Environmental Monitoring and Assessment, 192, 383. [
DOI:10.1007/s10661-020-08299-x]
33. Yarmoradi, Z.; Nasiri, B.; Mohammadi, G.; & M. Karampour, 2020. Long-term characteristics of the observed dusty days and its relationship with climatic parameters in East Iran, Arabian Journal of Geosciences, 13(6), 1-11. [
DOI:10.1007/s12517-020-5198-y]
34. Yousefi, R.; Wang, F.; Ge, Q.; Lelieveld, J.; & A. Shaheen, 2021. Aerosol Trends during the Dusty Season over Iran, Journal of Remote Sensing, 13, 1045-1065. [
DOI:10.3390/rs13061045]
35. Zheng, Y.; Davis, S. J.; Persad, G. G.; & K. Caldeira, 2020. Climate effects of aerosols reduce economic inequality, Journal of Nature Climate Change, 10, 220-224. [
DOI:10.1038/s41558-020-0699-y]