1. Akhavan, H.; Amoushahi, S.; & A. Setudeh, 2018. An Investigation on the Same Type of Vegetation NDVI Changes in Different Temperature Levels of the Mountain (Case Study: ShirKouh Mountains), Scientific and Research Journals Management System, 16(1), 37-50. (In Persian).
2. Akhavan, H.; Amoushahi, S.; & A. Setudeh, 2018. An Investigation on the Same Type of Vegetation NDVI Changes in Different Temperature Levels of the Mountain (Case Study: ShirKouh mountains), Scientific and Research Journals Management System, 16(1), 37-50. (In Persian).
3. Allen, P. A., 2017. Sediment Routing Systems, Cambridge University Press, New York, NY. [
DOI:10.1017/9781316135754]
4. Amini, E.; Zolfaghari, A.; Kaboli, H.; & M. Rahimi, 2022. Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province), Iranian Journal of Soil and Water Research, 53(9), 2027-2044. doi: 10.22059/ijswr.2022.343710.669279 (In Persian).
5. Amjad, M.; Yilmaz, M. T.; Yucel, I.; & K. K. Yilmaz, 2020. Performance Evaluation of Satellite-and Model-Based Precipitation Products Over Varying Climate and Complex Topography, Journal of Hydrology, 584, 124707. [
DOI:10.1016/j.jhydrol.2020.124707]
6. Avazpour, N.; Faramarzi, M.; Omidipour, R.; & H. Mehdizadeh, 2021. Monitoring the Drought Effects on Vegetation Changes Using Satellite Imagery (Case Study: Ilam Catchment), Geography and Environmental Sustainability, 11(4), 125-143. https://doi.org/ 10.22126/ ges. 2022.7130.2472 [
DOI:10.22126/ ges. 2022.7130.2472]
7. Beck, H.; Pan, M.; Roy, T.; Weedon, G.; Pappenberger, F.; van Dijk, A.; Huffman, G.; Adler, R.; & E. Wood, 2019. Daily Evaluation of 26 Precipitation Datasets Using Stage-IV Gauge-Radar Data for the CONUS, Hydrology and Earth System Sciences, 23, 207-224. https:// doi.org/10.5194/hess-23-207-2019 [
DOI:10.5194/hess-23-207-2019]
8. Bližňák, V.; Pokorná, L.; & Z. Rulfová, 2022. Assessment of the Capability of Modern Reanalyses to Simulate Precipitation in Warm Months Using Adjusted Radar Precipitation, Journal of Hydrology: Regional Studies, 42, 101121. [
DOI:10.1016/j.ejrh.2022.101121]
9. Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; & N. Khadka, 2021. Spatial Performance of Multiple Reanalysis Precipitation Datasets on the Southern Slope of Central Himalaya. Atmospheric Research, 250, 105365. https:// doi.org/10.1016 /j.atmosres. 2020.105365 [
DOI:10.1016/j.atmosres.2020.105365]
10. Darvand, S.; Khosravi, H.; Eskandari Damaneh, H.; & H. Eskandari Damaneh, 2021. Investigating the Trend of NDVI Changes Derived from MODIS Sensor Imagery (Case Study: Isfahan Province), Drnl, 1(2), 69-79.
11. Dastorani, M.; Komaki, Ch. B.; Khosravi, H.; & Z. Ghelichipour, 2019. Investigation of the Trend of Rainfall and Vegetation Changes in Arid and Semiarid Regions (Case Study:Khorasan Razavi, Iran), Journal of Arid Biome, 9(1), 11-19. https://doi.org/ 10.29252/ aridbiom. 2019.1540 [
DOI:10.29252/ aridbiom. 2019.1540]
12. Diallo, M.; Ern, M.; & F. Ploeger, 2021. The advective Brewer-Dobson Circulation in the ERA5 Reanalysis: Climatology, Variability, and Trends, Atmos. Chem. Phys., 21(10), 7515-7544. [
DOI:10.5194/acp-21-7515-2021]
13. Ding, M., Yili, Z., Liu, L., Wei, Z., Zhaofeng, W., & B. Wanqi, 2007. The Relationship Between NDVI and Precipitation on the Tibetan Plateau, Journal of Geographical Sciences, 17. [
DOI:10.1007/s11442-007-0259-7]
14. Duan, H.; Xue, X.; Wang, T.; Kang, W.; Liao, J.; & S. Liu, 2021. Spatial and Temporal Differences in Alpine Meadow, Alpine Steppe and All Vegetation of the Qinghai-Tibetan Plateau and Their Responses to Climate Change, Remote Sensing, 13(4), https:// doi.org /10. 3390/rs13040669 [
DOI:10.3390/rs13040669]
15. Duveiller, G.; Hooker, J.; & A. Cescatti, 2018. The Mark of Vegetation Change on Earth's Surface Energy Balance. Nature Communications, 9. [
DOI:10.1038/s41467-017-02810-8]
16. Ebrahimi, Z.; Roustaei, F.; & M. Soleimani sardo, 2022. Analysis of Temporal Vegetation Changes in Western Rangelands of Kerman Province Using MODIS Level 3 Data and its Relation to Climate Factors, Journal of Arid Regions Geographic Studies, 10(37), 40-52.
17. Fang, G. H.; Yang, J.; Chen, Y. N.; & C. Zammit, 2015. Comparing Bias Correction Methods in Downscaling Meteorological Variables for a Hydrologic Impact Study in an Arid Area in China, Hydrol. Earth Syst. Sci., 19(6), 2547-2559. [
DOI:10.5194/hess-19-2547-2015]
18. Fang, M., 2016. Application of Bayesian Model Averaging in the Reconstruction of the Past Climate Change Using PMIP3/CMIP5 Multimodel Ensemble Simulations, Journal of Climate, 29, 175-189. [
DOI:10.1175/JCLI-D-14-00752.1]
19. Firouzi, F.; Tavosi, T.; & P. Mahmoudi, 2019. Investigating the Sensitivity of NDVI and EVI Vegetation Indices to Dry and Wet Years in Arid and Semi-Arid Regions (Case study: Sistan plain, Iran), Geographical Data, 28(110), 163-179. SID. https://sid.ir/paper/253128/en, (In Persian).
20. Garai, S.; Khatun, M.; Singh, R.; Sharma, J.; Pradhan, M.; Ranjan, A.; Rahaman, S. M.; Khan, M. L.; & S. Tiwari, 2022. Assessing Correlation Between Rainfall, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Eastern India, Safety in Extreme Environments, 4(2), 119-127. [
DOI:10.1007/s42797-022-00056-2]
21. Ghalami, V.; Saghafian, B.; & T. Raziei, 2022. Investigating the Effect of Bias Correction on Quality Improvement of NEX-GDDP Downscaled Precipitation Data, Iran-Water Resources Research, 18(1), 68-83.
22. Ghebrezgabher, M. G.; Yang, T.; Yang, X.; & T. Eyassu Sereke, 2020. Assessment of NDVI Variations in Responses to Climate Change in the Horn of Africa, The Egyptian Journal of Remote Sensing and Space Science, 23(3), 249-261. [
DOI:10.1016/j.ejrs.2020.08.003]
23. Gleixner, S.; Demissie, T.; & G. T. Diro, 2020. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa?, Atmosphere, 11(9). https://doi.org /10.3390/ atmos 11090996 [
DOI:10.3390/atmos11090996]
24. Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galán, S.; & F. Francés, 2023. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951-2020), Atmospheric Research, 284, 106606. [
DOI:10.1016/j.atmosres.2023.106606]
25. Gudmundsson, L.; Bremnes, J. B.; Haugen, J.; & T. Skaugen, 2012. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Quantile Mapping - A Comparison of Methods, Hydrology and Earth System Sciences Discussions, 9, 6185-6201. https://doi.org /10.5194/hessd-9-6185-2012 [
DOI:10.5194/hessd-9-6185-2012]
26. Hadian, F.; Hoseini, S. Z.; & M. Seyed Hoseini, 2015. Monitoring vegetation changes using precipitation data and satellite images in north-west of Iran, IJRDR, 21(4), 756-768. https://doi.org /10.22092/ijrdr.2016.13078
27. Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; & C. Schneider, 2020. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau, Water, 12(11). [
DOI:10.3390/w12113271]
28. Holben, B. N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11), 1417-1434. https://doi.org/ 10. 1080/01431168608948945
https://doi.org/10.1080/01431168608948945 [
DOI:10. 1080/01431168608948945]
29. Hu, M., & Xia, B., (2019). A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degradation & Development. 30(4), 359-370. [
DOI:10.1002/ldr.3221]
30. Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; & l. Li, 2019. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging, Water, 11(3), 579. [
DOI:10.3390/w11030579]
31. Huang, C.; Yang, Q.; Guo, Y.; Zhang, Y.; & l. Guo, 2020. The pattern, change and driven factors of vegetation cover in the Qin Mountains region, Scientific Reports, 10. https://doi.org /10.1038/s41598-020-75845-5 [
DOI:10.1038/s41598-020-75845-5]
32. Huth, R., & R. Beranova., (2021). How to Recognize a True Mode of Atmospheric Circulation Variability. Earth and Space Science. 8. [
DOI:10.1029/2020EA001275]
33. Jia, L.; Li, Z.; Xu, G.; Ren, Z.; Li, P.; Cheng, Y.; Zhang, Y.; Wang, B.; Zhang, J.; & S. Yu, 2020. Dynamic change of vegetation and its response to climate and topographic factors in the Xijiang River basin, China, Environmental Science and Pollution Research, 27(11), 11637-11648. [
DOI:10.1007/s11356-020-07692-w]
34. Kolachian, R.; Saghafian, B.; & S. Moazami, 2021. Evaluation of Post-Processing and Bias Correction of Monthly Precipitation and Temperature Forecasts in Karun Basin, Iran-Water Resources Research, 16(4), 98-111.
35. Li, H.; Li, Y.; Gao, Y.; Zou, C.; Yan, S.; & J. Gao, 2016. Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China, Sustainability, 8, 1146. https://doi .org/10.3390/su8111146 [
DOI:10.3390/su8111146]
36. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; Martens, B.; Miralles, D. G.; Piles, M.; Rodríguez-Fernández, N. J.; Zsoter, E.; Buontempo, C.; & J. N. Thépaut, 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13(9), 4349-4383. [
DOI:10.5194/essd-13-4349-2021]
37. Muñoz-Sabater, J.; Lawrence, H.; Albergel, C.; Rosnay, P.; Isaksen, L.; Mecklenburg, S.; Kerr, Y.; & M. Drusch, 2019. Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System, Quarterly Journal of the Royal Meteorological Society, 145(723), 2524-2548. [
DOI:10.1002/qj.3577]
38. Najafi, Z.; Darvishsefat, A.; Fatehi, P.; & P. Attarod, 2020. Time series analysis of vegetation dynamic trend using Landsat data in Tehran Megacity, Iranian Journal of Forest, 12(2), 257-270, (In Persian).
39. Nogueira, M., 2020. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences, Journal of Hydrology, 583, 124632. [
DOI:10.1016/j.jhydrol.2020.124632]
40. Pelosi, A.; Terribile, F.; D'Urso, G.; & G. B. Chirico, 2020. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration, Water, 12(6). [
DOI:10.3390/w12061669]
41. Reichle, R. H.; Draper, C. S.; Liu, Q.; Girotto, M.; Mahanama, S. P. P.; Koster, R. D.; & G. J. M. De Lannoy, 2017. Assessment of MERRA-2 Land Surface Hydrology Estimates, Journal of Climate, 30(8), 2937-2960. [
DOI:10.1175/JCLI-D-16-0720.1]
42. Sam Khaniani, A., & A. Mohammadi., (2022). Comparison of ERA5-Land reanalysis data with surface observations over Iran. Iranian Journal of Geophysics. 16(1), 195-212. https:// doi. org /10.30499/ijg.2022.313494.1376
43. Shabanipoor, M.; Darvish Sefat, A. A.; & R. Rahmani., 2019. Long-term trend analysis of vegetation changes using MODIS-NDVI time series during 2000-2017 (Case study: Kurdistan province), Journal of Forest and Wood Products, 72(3), 193-204.
44. Shafei, H., & S. M. Hosseini., )2011(. A study of vegetation in Sistan region through satellite data. 3(9), 91-105, Iranian Journal of Plant Ecophysiology, SID. https:// sid.ir /paper /188374/fa. (In Persian).
45. Shen, M.; Piao, S.; Chen, X.; An, S.; Fu, Y. H.; Wang, S.; Cong, N.; & I. A. Janssens, 2016. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau, Global Change Biology, 22(9), 3057-3066. https:// doi.org /10. 1111 /gcb. 13301 [
DOI:10.1111/gcb.13301]
46. Sheridan, S. C.; Lee, C. C.; & E. T. Smith, 2020. A Comparison Between Station Observations and Reanalysis Data in the Identification of Extreme Temperature Events, Geophysical Research Letters, 47(15), e2020GL088120. [
DOI:10.1029/2020GL088120]
47. Spadoni, G. L.; Cavalli, A.; Congedo, L.; & M. Munafò, 2020. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography, Remote Sensing Applications: Society and Environment, 20, 100419. https:// doi. org/10.1016/j.rsase.2020.100419 [
DOI:10.1016/j.rsase.2020.100419]
48. Stefanidis, K.; Varlas, G.; Vourka, A.; Papadopoulos, A.; & E. Dimitriou, 2021. Delineating the relative contribution of climate related variables to chlorophyll-a and phytoplankton biomass in lakes using the ERA5-Land climate reanalysis data, Water Research, 196, 117053. [
DOI:10.1016/j.watres.2021.117053]
49. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; & K. L. Hsu, 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons, Reviews of Geophysics, 56(1), 79-107. [
DOI:10.1002/2017RG000574]
50. Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; & Y. Xu, 2018. Elevation‐dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982-2013, International Journal of Climatology, 38(4), 2029-2038. [
DOI:10.1002/joc.5314]
51. Tarek, M.; Brissette, F. P.; & R. Arsenault, 2020. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci, 24(5), 2527-2544. [
DOI:10.5194/hess-24-2527-2020]
52. Wang, Y. R.; Hessen, D. O.; Samset, B. H.; & F. Stordal, 2022. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data, Remote Sensing of Environment, 280, 113181. https://doi. org/ 10. 1016/j.rse.2022.113181 [
DOI:10.1016/j.rse.2022.113181]
53. Weedon, G. P.; Gomes, S.; Viterbo, P.; Shuttleworth, W. J.; Blyth, E.; Österle, H.; Adam, J. C.; Bellouin, N.; Boucher, O.; & M. Best, 2011. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. Journal of Hydrometeorology, 12(5), 823-848. https://doi. org/ 10. 1175 /20 11JHM1369.1 [
DOI:10.1175/2011JHM1369.1]
54. Zakeri, A.; Naderi, R.; & V. Poozesh, 2020. An investigation of plant species distribution in Semnan province (Case study: Herbarium of Damghan University), Journal of Plant Research (Iranian Journal of Biology), 33 (4), 891-913, (In Persian).
55. Zhang, Y.; Jiang, X.; Lei, Y.; & S. Gao, 2022. The contributions of natural and anthropogenic factors to NDVI variations on the Loess Plateau in China during 2000-2020, Ecological Indicators, 143, 109342. [
DOI:10.1016/j.ecolind.2022.109342]
56. Zhe, M., & X. Zhang., (2021). Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecological Indicators. 124, 107431. https://doi. org/ 10. 1016/j.ecolind.2021.107431 [
DOI:10.1016/j.ecolind.2021.107431]