سال 15، شماره 1 - ( بهار 1404 )                   جلد 15 شماره 1 صفحات 146-120 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafi Vafa A, Hosseini S M, Hosseinzadeh M M, Jafarbeglou M. Modeling the Erosion Potential and Sedimentation rate of the Gorganroud Watershed. E.E.R. 2025; 15 (1) :120-146
URL: http://magazine.hormozgan.ac.ir/article-1-860-fa.html
نجفی وفا اعظم، حسینی سید موسی، حسین زاده محمد مهدی، جعفربگلو منصور. مدل‌سازی پتانسیل فرسایش و نرخ رسوب‌دهی حوضه آبریز گرگانرود. پژوهش هاي فرسايش محيطي. 1404; 15 (1) :120-146

URL: http://magazine.hormozgan.ac.ir/article-1-860-fa.html


گروه جغرافیای طبیعی، دانشگاه تهران، تهران، ایران. ، smhosseini@ut.ac.ir
چکیده:   (562 مشاهده)
حوضه­آبریز­گرگانرود در استان گلستان، به دلیل شرایط خاص­ توپوگرافی و خاک‌های حساس، یکی از مناطق آسیب‌پذیر­کشور­در برابر فرسایش خاک­ محسوب می‌شود. تعیین پتانسیل فرسایش این حوضه در ارزیابی ریسک فرسایش و برآورد میزان تلفات رسوب اهمیت دارد. در این پژوهش، با استفاده از مدل پتانسیل فرسایش(EPM)­، توزیع فضایی پتانسیل فرسایش خاک در 11 زیرحوضه حوضه آبریز­گرگانرود مورد ارزیابی قرار­­گرفت. به‌منظور دستیابی به این هدف، از لایه‌های اطلاعاتی زمین‌شناسی، خاک‌شناسی، شیب، ارتفاع­­، دمای سطح­زمین، بارش و­­­کاربری اراضی زمین در محیط GIS استفاده شد. در ادامه، نسبت تحویل رسوب در هر زیرحوضه توسط سه روش مرسوم­گاوریلوویچ، بویس و ­ویلیامز-برنت محاسبه و رابطه ریاضی بین این نسبت و ویژگی‌های حوضه‌ای مشخص شد. برای اعتبارسنجی نقشه­­ پتانسیل رسوب حوضه،­ داده‌های متوسط بلندمدت­ رسوب ویژه 11 ایستگاه هیدرومتری در­­خروجی زیرحوضه­های مورد مطالعه طی سال‌های 1345 تا 1396 محاسبه و نمودار مشخصه عملکرد محاسبه شد. سطح زیر منحنی مشخصه نتایج پتانسیل رسوب بر اساس معادله نسبت تحویل رسوب ویلیامز-برنت،­گاوریلوویچ­ و بویس­ به ترتیب 78/0، 42/0و 75/0 بدست آمد. نتایج پژوهش نشان داد که بجز بخش­های جنوب شرقی حوضه گرگانرود که شامل زیرحوضه‌های پل غزنوی و آق سو­قوچمز­که در کلاس شدت فرسایش شدید قرار دارند، سایر زیرحوضه‌ها در­کلاس بسیار شدید قرار می‌گیرند. میزان فرسایش­ ویژه و رسوب ویژه کل حوضه به ترتیب 7656 و 26/862 مترمکعب در کیلومترمربع در سال برآورد شد. به منظور ارائه یک رابطه ریاضی نسبت تحویل رسوب برای حوضه آبریز گرگانرود، از فاکتورهای مساحت، محیط، شماره منحنی، طول آبراهه، بارش، دما، اختلاف ارتفاع و شیب متوسط زیرحوضه­های مورد مطالعه در رگرسیون گام­ به­گام استفاده شد. مدل رگرسیونی بدست آمده دارای ضریب تبیین 969/0 و خطای استاندارد 022/0، عملکرد بسیار خوبی در محاسبه مقدار SDR زیرحوضه­های مور مطالعه نشان داد. متغیرهای شیب حوضه، طول آبراهه، دما و بارش به ترتیب بیشترین تاثیر را در برآورد SDR در حوضه گرگانرود داشتند. روش­ مورد استفاده در این تحقیق می­تواند برای سایر حوضه­های آبریز به منظور کمی­سازی نرخ فرسایش کل و میزان رسوب خروجی از حوضه استفاده شود.
متن کامل [PDF 2879 kb]   (48 دریافت)    

فهرست منابع
1. Ahmadi, Habibollah. (2007). Geomorphology of Land Use (Volume 1). Tehran University Press.
2. Aleksova, B., Lukić, T., Milevski, I., Spalević, V., & Marković, S. B. (2023). Modelling water erosion and mass movements (wet) by using GIS-based multi-hazard susceptibility assessment approaches: a case study-Kratovska Reka Catchment (North Macedonia). Atmosphere, 14(7), 1139. [DOI:10.3390/atmos14071139]
3. Alewell, C., Borrelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International soil and water conservation research, 7(3), 203-225. [DOI:10.1016/j.iswcr.2019.05.004]
4. Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. [DOI:10.1126/science.1261071]
5. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89. [DOI:10.1111/j.1752-1688.1998.tb05961.x]
6. Bagherzadeh, A., & Daneshvar, M. R. M. (2010, April). Estimating and mapping sediment production at Kardeh watershed by using GIS. In 1st International Applied Geological Congress, Mashad, Iran.
7. Bazzoffi, P. (1985, March). Methods for net erosion measurement in watersheds as a tool for the validation of models in central Italy. In Workshop on soil erosion and hillslope hydrology with emphasis on higher magnitude events, Leuven.
8. Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., ... & Panagos, P. (2021). Soil erosion modelling: A global review and statistical analysis. Science of the total environment, 780, 146494. [DOI:10.1016/j.scitotenv.2021.146494]
9. Borrelli, P., Ballabio, C., Yang, J. E., Robinson, D. A., & Panagos, P. (2022). GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Scientific Data, 9(1), 406. [DOI:10.1038/s41597-022-01489-x]
10. Borrelli, P., Panagos, P., Alewell, C., Ballabio, C., de Oliveira Fagundes, H., Haregeweyn, N., ... & Robinson, D. A. (2023). Policy implications of multiple concurrent soil erosion processes in European farmland. Nature Sustainability, 6(1), 103-112. [DOI:10.1038/s41893-022-00988-4]
11. Boyce, R. C. (1975). Sediment Routing with Sediment Delivery Ratios. Present and Prospective Technology for ARS/USDA.
12. Brannigan, N., Mullan, D., Vandaele, K., Graham, C., McKinley, J., & Meneely, J. (2022). Modelling soil erosion by water under future climate change: Addressing methodological gaps. Catena, 216, 106403. [DOI:10.1016/j.catena.2022.106403]
13. Chen, W., Huang, Y. C., Lebar, K., & Bezak, N. (2023). A systematic review of the incorrect use of an empirical equation for the estimation of the rainfall erosivity around the globe. Earth-science reviews, 238, 104339. [DOI:10.1016/j.earscirev.2023.104339]
14. Durán Zuazo, V. H., Martínez, J. F., Pleguezuelo, C. R., Martínez Raya, A., & Rodríguez, B. C. (2006). Soil-erosion and runoff prevention by plant covers in a mountainous area (SE Spain): implications for sustainable agriculture. Environmentalist, 26(4), 309-319. [DOI:10.1007/s10669-006-0160-4]
15. Durán Zuazo, V. H., Martínez, J. F., Pleguezuelo, C. R., Martínez Raya, A., & Rodríguez, B. C. (2006). Soil-erosion and runoff prevention by plant covers in a mountainous area (SE Spain): implications for sustainable agriculture. Environmentalist, 26(4), 309-319. [DOI:10.1007/s10669-006-0160-4]
16. Efthimiou, N., Lykoudi, E., Panagoulia, D., & Karavitis, C. (2016). Assessment of soil susceptibility to erosion using the EPM and RUSLE Models: The case of Venetikos River Catchment. Global NEST Journal, 18(1), 164-179. [DOI:10.30955/gnj.001847]
17. Elhag, M., & Bahrawi, J. A. (2014). Conservational use of remote sensing techniques for a novel rainwater harvesting in arid environment. Environmental earth sciences, 72, 4995-5005. [DOI:10.1007/s12665-014-3367-6]
18. Faghfouri, Z., Arman, N., Faraji, M., & Khorsandi, Z. (2017). Identifying the effective factors on sediment yield using statistical method, case study: Seyed Abad Basin. Watershed Engineering and Management, 9(2), 190-204.
19. Gavrilovi'c, S., 1972. Inˇzenjering o bujiˇcnim tokovima i eroziji. Belgrade: Republic water fund of the SR Serbia, Belgrade: Water management organization "Belgrade": Institute for erosion, melioration and water management of torrential streams at the Faculty of Forestry, Belgrade.
20. Gavrilovic, Z. (1988). Use of an Empirical Method(Erosion Potential Method) for Calculating Sediment Production and Transportation in Unstudied or Torrential Streams. In International Conference on River Regime. Hydraulics Research Limited, Wallingford, Oxon UK. 1988. p 411-422, 5 fig, 4 tab, 8 ref..
21. Gavrilovic, Z., Stefanovic, M., Milovanovic, I., Cotric, J., & Milojevic, M. (2008). Torrent classification-base of rational management of erosive regions. In IOP conference series: earth and environmental science (Vol. 4, No. 1, p. 012039). IOP publishing. [DOI:10.1088/1755-1307/4/1/012039]
22. Ghanbarzadeh, H., Gholamrezaee, M., 2007. The Estimated of Potential Erosion and Sediment Using EPM Model in Arekamar Watershed in Fariman Using GIS, Geographic Sciences Quarterly, No. 7 & 8, PP. 187-206.
23. Hartemink, A. E., & Bockheim, J. G. (2013). Soil genesis and classification. Catena, 104, 251-256. [DOI:10.1016/j.catena.2012.12.001]
24. Jafari Ardakani, A., Bayat, R., Peyrovan, H. R., Jafari, M. S., & Charkhabi, A. H. (2009). Sediment yield and erosion rate of loess deposits of Golestan province in Iran. In 6th Iranian Conference of Engineering Geology and the Environment (Vol. 4, pp. 1161-1172).
25. Khodabakhshi, Zeinab, Arzani, Nasser, Abdollahi, Khodayar, & Davoodian, Alireza. (2010). Study of Erosion Susceptibility of Rock Units and Sediment Production Using the EPM Model and GIS in Part of the Zayandeh Rud Watershed - Haidari Watershed in the North of Shahrekord. Journal of Stratigraphy and Sedimentology, 26(2), 33-48.
26. Kostadinov, S., Dragićević, S., Stefanović, T., Novković, I., & Petrović, A. M. (2017). Torrential flood prevention in the Kolubara river basin. Journal of Mountain Science, 14(11), 2230-2245. [DOI:10.1007/s11629-017-4575-9]
27. Lense, G. H. E., Moreira, R. S., Parreiras, T. C., Santana, D. B., Bolelli, T. D. M., & Mincato, R. L. (2020). Water erosion modeling by the Erosion Potential Method and the Revised Universal Soil Loss Equation: a comparative analysis. Revista Ambiente & Água, 15, e2501. [DOI:10.4136/ambi-agua.2501]
28. Let me know if you need further assistance!Ahmadi, H. 1386. Applied geomorphology (first volume). University of Tehran Publishing and Printing Institute. (in Persian)
29. Lu, H., Moran, C. J., & Prosser, I. P. (2006). Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling & Software, 21(9), 1297-1308. [DOI:10.1016/j.envsoft.2005.04.021]
30. Mahmmudi, F.A., 2004. Dynamic Geomorphology, 6th edition, Payame Noor University Press, Tehran, Iran.
31. Mansouri, Zahra & Kabousi, Kami. (2013). Erosion Intensity Zoning Using the EPM Model (Case Study: Golidagh Watershed, Golestan Province). First National Conference on Sustainable Agriculture and Natural Resources, Tehran. https://civilica.com/doc/258216
32. Mansouri, Zahra and Kabousi, Kami, (2013), Erosion intensity zoning using EPM model (case study: Glidagh watershed, Golestan province), the first national conference on sustainable agriculture and natural resources, Tehran, https://civilica.com/ doc/258216. (in Persian)
33. Mohammadi Ostadkalaei, Amin, Mosaadi, Abolfazl, & Heshamatpour, Ali. (2007). Determining the Most Suitable Method for Estimating Suspended Sediment in the Qazaqli Hydrometric Station of the Gorganrud River.
34. Mohammadi Ostadkalaye Amin, Mosaedi Abolfazl, & Hashmatpour Ali. (2007). Determining the most appropriate method for estimating suspended sediment in the Ghazagli hydrometric station of the Gorganrood River. (in Persian)
35. Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268-13272. [DOI:10.1073/pnas.0611508104]
36. Moradi, S., Limaei, S. M., & Khanmohammadi, M. (2015). Calculation of sediment yield in the Zemkan River Basin of Iran using analytical methods and GIS concept. Agriculture & Forestry, 61(2), 157-171. [DOI:10.17707/AgricultForest.61.2.14]
37. Mosaadi, Mansour Najafi Haji Vareh, & Mehdi Jalali. (2009). Estimation of Sediment Output from the Gorganrud Watershed for Erosion Assessment. In the 5th National Conference on Watershed Sciences and Engineering of Iran (Sustainable Management of Natural Disasters).
38. Mosaedi, Mansour Najafi Hajivar, & Mehdi Jalali. (2009). Estimating the output sediment from the Gorgan River catchment area in order to determine the erosion rate. In the 5th National Conference on Watershed Science and Engineering of Iran (Sustainable Management of Natural Disasters). Sudden flows in spring (following heavy rainfall and melting snow) and low discharge in autumn and summer are identified. (in Persian)
39. Ong Majid, & Nahtani Mohammad. (2004). The relationship between geomorphological units and erosion and sediment production in the Kashidar watershed (Gorganrood). (in Persian)
40. Onogh, Majid, & Nahtani, Mohammad. (2004). The relationship between geomorphological units and erosion and sediment production in the Kashidar Watershed (Gorganrud).
41. Panagos, P., Ballabio, C., Poesen, J., Lugato, E., Scarpa, S., Montanarella, L., & Borrelli, P. (2020). A soil erosion indicator for supporting agricultural, environmental and climate policies in the European :union:. Remote Sensing, 12(9), 1365. [DOI:10.3390/rs12091365]
42. Park, Y. S., Kim, J., Kim, N. W., Kim, S. J., Jeon, J. H., Engel, B. A., ... & Lim, K. J. (2010). Development of new R, C and SDR modules for the SATEEC GIS system. Computers & Geosciences, 36(6), 726-734. [DOI:10.1016/j.cageo.2009.11.005]
43. Pintar, J., Mikoš, M., & Verbovšek, V. (1986). Elementi okolju prilagojenega urejanja vodotokov: alternativa utesnjevanju živih naravnih procesov v toge objekte.
44. Ponjiger, T. M., Lukić, T., Wilby, R., Marković, S. B., Valjarević, A., Dragićević, S., ... & Morar, C. (2023). Evaluation of rainfall erosivity in the Western Balkans by mapping and clustering ERA5 reanalysis data.
45. Pourjavad, E., & Shirouyehzad, H. (2011). A MCDM approach for prioritizing production lines: a case study. International Journal of Business and Management, 6(10), 221-229.‏ [DOI:10.5539/ijbm.v6n10p221]
46. Pourjavad, E., & Shirouyehzad, H. (2011). A MCDM approach for prioritizing production lines: a case study. International Journal of Business and Management, 6(10), 221-229. [DOI:10.5539/ijbm.v6n10p221]
47. Rafahi, H., 2009. Water Erosion and Conservation, 5th Edition, University of Tehran Press, Tehran, Iran.
48. Recatalá, L., Añó, C., Verzandvoort, S., Ritsema, C., & Sánchez, J. (2011). Harmonization of risk assessment methods of soil erosion by water in the European :union:. Soil Erosion: Causes, Processes and Effects, 161-176.
49. Renard, K. G. (1995). Predicting Soil Erosion by Water; A Guide to Coservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, 703, 367.
50. Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
51. Safari, Mohammad, Noori, Mohammad, Karami, Mohammad, & Jalal, Mohammad. (2018). Examining the Impact of Land Cover and Land Use Changes on Soil Erosion Potential - A Case Study of the Qara Sou-Gorganrud Watershed. Scientific Journals System, 5(1), 83-96.
52. Safari, Nouri, Kerami, & Jalal. (2018). Investigating the impact of land cover and land use changes on soil erosion capability - a case study of Qarasu Basin, Gorganrood. Scientific Journal System, 5(1), 83-96(in Persian). [DOI:10.29252/jsaeh.5.1.83]
53. Sandu, I., Pescaru, V. I., Poiană, I., Geicu, A., Cândea, I., & Tâstea, D. (2008). Clima României (Climate of Romania). The Publishing House of the Romanian Academy, Bucharest.
54. Shahreza, Ali Saleh & Asghari, Ebrahim. (2009). Report on the Integration of Water Resources Studies of the Qara Sou-Gorganrud Watershed, Volume 3: Statistical Analysis, Data Interpretation, and Hydrology, Part 1: Meteorology, 293 pp.
55. Shahreza, Ali Saleh and Asghari, Ebrahim. (2008). The integrated report of studies of water resources in the Gharesu-Gorganrood watershed, volume three: analysis of statistics and information and water expression, part one: meteorology, 293 p. (in Persian)
56. Ts, M. I., & Gruev, G. (2002). Intensity of erosion in the catchment area of the river Rakovitsa. Forest Science, 1, 73-84.
57. USDA, 2019. Conservation practices have decreased soil erosion on cultivated cropland over time [WWW Document]. https://www.ers.usda.gov/data-products/chart-gall ery/gallery/chart-detail/?chartId=94923.
58. Van der Knijff, J., Jones, R., & Montanarella, L. (2000). Soil erosion risk assessment in Europe: European Soil Bureau. European Commission Belgium.
59. Van Oost, K., Govers, G., & Desmet, P. (2000). Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape ecology, 15, 577-589. [DOI:10.1023/A:1008198215674]
60. Veličković, N., Todosijević, M., & Šulić, D. (2022). Erosion Map Reliability Using a Geographic Information System (GIS) and Erosion Potential Method (EPM): A Comparison of Mapping Methods, BELGRADE Peri-Urban Area, Serbia. Land, 11(7), 1096. [DOI:10.3390/land11071096]
61. Walling, D. E. (1983). The sediment delivery problem. Journal of hydrology, 65(1-3), 209-237. [DOI:10.1016/0022-1694(83)90217-2]
62. Williams, J. R., & Berndt, H. D. (1977). Sediment yield prediction based on watershed hydrology. Transactions of the ASAE, 20(6), 1100-1104. [DOI:10.13031/2013.35710]
63. Wischmeier, W., & Smith, D. D. (1978). Predicting rainfall erosion losses-A guide to conservation planning. Predicting rainfall erosion losses-A guide to conservation planning. US Department of Agriculture, Washington, DC.
64. Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological processes, 17(14), 2913-2928. [DOI:10.1002/hyp.1441]
65. Zema, D. A., Labate, A., Martino, D., & Zimbone, S. M. (2017). Comparing different infiltration methods of the HEC‐HMS model: the case study of the Mésima Torrent (Southern Italy). Land Degradation & Development, 28(1), 294-308. [DOI:10.1002/ldr.2591]
66. Zhang, H. Y., Shi, Z. H., Fang, N. F., & Guo, M. H. (2015). Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology, 234, 19-27. [DOI:10.1016/j.geomorph.2015.01.014]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb