زودآیند (زمستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل. ، mortezasaberi@uoz.ac.ir
چکیده:   (960 مشاهده)
در سال‌های اخیر، فرسایش خاک به‌ویژه در نواحی خشک و نیمه‌خشک، به‌عنوان یکی از مهم‌ترین تهدیدهای زیست‌محیطی مطرح بوده است. این پژوهش با هدف بررسی تأثیر فرسایش ترکیبی بادی و آبی بر تغییرات ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در منطقه بمپور، واقع در استان سیستان و بلوچستان انجام شد. نمونه‌برداری خاک از عمق ۰ تا ۳۰ سانتی‌متر در چهار کلاس شدت فرسایش شامل بدون فرسایش، فرسایش کم، متوسط و شدید انجام گرفت. به‌منظور ارزیابی پاسخ خاک به این فرایندها، پارامترهای فیزیکی (بافت، جرم مخصوص ظاهری، تخلخل)، شیمیایی (اسیدیته، هدایت الکتریکی، کربن آلی، نیتروژن کل، فسفر، پتاسیم، رطوبت) و زیستی (فعالیت آنزیمی، کربن و نیتروژن زیست‌توده میکروبی، تنفس میکروبی پایه، جمعیت میکروارگانیسم‌ها و سهم میکروبی خاک) مورد سنجش قرار گرفتند. تجزیه و تحلیل آماری داده‌ها با استفاده از آزمون واریانس یک‌طرفه و نرم‌افزار SPSS انجام شد. نتایج نشان داد که شدت فرسایش ترکیبی بادی و آبی تأثیر معنی‌داری بر کلیه ویژگی‌های فیزیکی، شیمیایی و زیستی خاک دارد. بیشترین میزان تفاوت در ویژگی‌های فیزیکی مربوط به جرم مخصوص ظاهری و تخلخل بود که نشان می‌دهد این دو ویژگی به شدت تحت تأثیر فرسایش قرار می‌گیرند. کربن آلی در خاک‌های بدون فرسایش با ۵۵/۵ گرم بر کیلوگرم، بیشترین مقدار را داشت و با افزایش شدت فرسایش، این مقدار به‌طور معنی‌داری کاهش یافت. همچنین افزایش شدت فرسایش منجر به کاهش معنی‌دار شاخص‌های میکروبی خاک شده است. تفاوت معنی‌دار در سطح آماری ۱ درصد در تمامی متغیرها بیانگر حساسیت بالای ویژگی‌های زیستی خاک به فرسایش و کاهش چشمگیر کیفیت زیستی خاک در شرایط فرسایش‌یافته است. به‌طور کلی، فرسایش نه‌تنها حاصلخیزی و فعالیت میکروبی خاک را کاهش می‌دهد، بلکه عملکرد اکوسیستمی و ظرفیت ذخیره‌سازی کربن را نیز مختل می‌کند. بنابراین، اجرای اقدامات حفاظتی برای کنترل فرسایش و حفظ کیفیت پایدار خاک ضروری است.
متن کامل [PDF 1160 kb]   (66 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مدیریت و کنترل اثرات فرسایش محیطی
دریافت: 1404/3/10

فهرست منابع
1. Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil thermal conductivity: Effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64(4), 1285-1290. [DOI:10.2136/sssaj2000.6441285x]
2. Amooh, M. K., & Bonsu, M. E. N. S. A. H. (2015). Effects of soil texture and organic matter on evaporative loss of soil moisture. Journal of Global Agriculture and Ecology, 3, 152-161.
3. Anderson, J. P. E. (1982). Soil respiration. In A. L. Page (Ed.), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (pp. 831-871). ASA and SSSA. [DOI:10.2134/agronmonogr9.2.2ed.c41]
4. Asghari, S. H., & Arkhazloo, H. S. (2020). Effects of land use and slope on soil physical, mechanical and hydraulic quality in Heyran neck, Ardabil Province. Journal of Environmental Erosion Research, 37, 79-91. (in persian)
5. Banerjee, S., Misra, A., Sar, A., Pal, S., Chaudhury, S., & Dam, B. (2020). Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles. Applied Soil Ecology, 152, 103544. [DOI:10.1016/j.apsoil.2020.103544]
6. Bastani, M., Sadeghipour, A., Kamali, N., Zarafshar, M., & Bazoot, S. (2023). How does livestock graze management affect woodland soil health. Frontiers in Forests and Global Change, 6, 1-8. [DOI:10.3389/ffgc.2023.1028149]
7. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837-842. [DOI:10.1016/0038-0717(85)90144-0]
8. Caldwell, B. A. (2005). Enzyme activities as a component of soil biodiversity: A review. Pedobiologia, 49, 637-644. [DOI:10.1016/j.pedobi.2005.06.003]
9. Chen, L., Baoyin, T., & Xia, F. (2022). Grassland management strategies influence soil C, N, and P sequestration through shifting plant community composition in semi-arid grasslands of northern China. Ecological Indicators, 34, 1-12. [DOI:10.1016/j.ecolind.2021.108470]
10. Chen, Q., Dong, J., Zhu, D., Hu, H., Delgado-Baquerizo, M., Ma, Y., He, J.-Z., & Zhu, Y.-G. (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 141, 107686. [DOI:10.1016/j.soilbio.2019.107686]
11. Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A. B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., & Prather, K. A. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339(6127), 1572-1578. [DOI:10.1126/science.1227279]
12. Fathizad, H., et al. (2020). Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecological Indicators, 118, 106736. [DOI:10.1016/j.ecolind.2020.106736]
13. Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579-590. [DOI:10.1038/nrmicro.2017.87]
14. Hladký, J., Novotná, J., Elbl, J., Kynický, J., Juřička, D., Novotná, J., & Brtnický, M. (2016). Impacts of water erosion on soil physical properties. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64, 1523-1527. [DOI:10.11118/actaun201664051523]
15. Huang, J., Li, Z., Zeng, G., Zhang, J., Li, J., Nie, X., Ma, W., & Zhang, X. (2013). Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China. Ecological Engineering, 60, 67-75. [DOI:10.1016/j.ecoleng.2013.07.040]
16. Iturri, L. A., & Buschiazzo, D. E. (2023). Interactions between wind erosion and soil organic carbon. In Agricultural Soil Sustainability and Carbon Management (pp. 163-179). Academic Press. [DOI:10.1016/B978-0-323-95911-7.00005-0]
17. Kamali, N., Sadeghipour, A., Souri, M., & Mastinu, M. (2022). Variations in soil biological and biochemical indicators under different grazing intensities and seasonal changes. Land, 11, 1537. [DOI:10.3390/land11091537]
18. Kirkels, F. M. S. A., Cammeraat, L. H. N., & Kuhn, J. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes: A review of different concepts. Geomorphology, 226, 94-105. [DOI:10.1016/j.geomorph.2014.07.023]
19. Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519-539. [DOI:10.1002/ldr.472]
20. Lal, T. N., Hinterberger, T., Widman, G., Schröder, M., Hill, N. J., Rosenstiel, W., Elger, C. E., Schölkopf, B., & Birbaumer, N. (2005). Methods towards invasive human brain computer interfaces. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural Information Processing Systems (Vol. 17, pp. 737-744). MIT Press.
21. Li, P., Liu, L., Wang, J., Wang, Z., Wang, X., Bai, Y., & Chen, S. (2018). Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land Degradation & Development, 29(11), 3469-3478. [DOI:10.1002/ldr.3118]
22. Li, H. Q., Zhu, H. S., Wei, X. R., Liu, B. Y., & Shao, M. A. (2021). Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China. Agriculture, Ecosystems & Environment, 314, 107388. [DOI:10.1016/j.agee.2021.107388]
23. Li, Z., Liu, X., Zhang, M., & Xing, F. (2022). Plant diversity and fungal richness regulate the changes in soil multifunctionality in a semi-arid grassland. Biology, 11(6), 870. [DOI:10.3390/biology11060870]
24. Li, Z., Xiao, H., Tang, Z., Huang, J., Nie, X., Huang, B., Ma, W., Lu, Y., & Zeng, G. (2015). Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology, 71, 37-44. [DOI:10.1016/j.ejsobi.2015.10.003]
25. Long, X. E., Yao, H., Huang, Y., Wei, W., & Zhu, Y. G. (2018). Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry, 118, 103-114. [DOI:10.1016/j.soilbio.2017.12.014]
26. Makoi, J. H., & Ndakidemi, P. A. (2008). Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7, 181-191.
27. Mandal, D., & Giri, N. (2021). Soil erosion and policy initiatives in India. Current Science, 120(6), 1007-1012. [DOI:10.18520/cs/v120/i6/1007-1012]
28. Mandal, D., Chandrakala, M., Alam, N. M., & Mandal, U. (2021). Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India. CATENA, 204, 105440. [DOI:10.1016/j.catena.2021.105440]
29. Mandal, D., & Dadhwal, K. S. (2012). Land evaluation and soil assessment for conservation planning and enhanced productivity (p. 90). Central Soil and Water Conservation Research and Training Institute.
30. Mandal, D., Patra, S., Sharma, N. K., Alam, N. M., Jana, C., & Lal, R. (2023). Impacts of soil erosion on soil quality and agricultural sustainability in the North Western Himalayan Region of India. Sustainability, 15(6), 5430. [DOI:10.3390/su15065430]
31. Martens, R. (1995). Current methods for measuring microbial biomass C in soil: Potentials and limitations. Biology and Fertility of Soils, 19, 87-99. [DOI:10.1007/BF00336142]
32. Molla, A., Skoufogianni, E., Lolas, A., & Skordas, K. (2022). The impact of different cultivation practices on surface runoff, soil and nutrient losses in a rotational system of legume-cereal and sunflower. Plants, 11(23), 3513. [DOI:10.3390/plants11243513]
33. Moradi, H. R., Rezaei, V., & Erfanian, M. (2024). Investigation of physicochemical characteristics of soil in badland areas formation. Researches in Earth Sciences, 15(3), 91-105. [DOI:10.48308/esrj.2021.101282]
34. Nabiollahi, K., Golmohamadi, F., Taghizadeh-Mehrjardi, R., Kerry, R., & Davari, M. (2018). Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318, 16-28. [DOI:10.1016/j.geoderma.2017.12.024]
35. Owens, P. N. (2020). Soil erosion and sediment dynamics in the Anthropocene: A review of human impacts during a period of rapid global environmental change. Journal of Soils and Sediments, 20, 4115-4143. [DOI:10.1007/s11368-020-02815-9]
36. Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3, 443-463. [DOI:10.3390/agriculture3030443]
37. Plotnikova, O. O., Demidov, V. V., Farkhodov, Y. R., Tsymbarovich, P. R., & Semenkov, I. N. (2024). Influence of water erosion on soil aggregates and organic matter in arable Chernozems: Case study. Agronomy, 14(8), 1607. [DOI:10.3390/agronomy14081607]
38. Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G., ... & Wei, X. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal, 15(8), 2474-2489. [DOI:10.1038/s41396-021-00913-1]
39. Qu, Y., Tang, J., Li, Z., Zhou, Z., Wang, J., Wang, S., & Cao, Y. (2020). Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of northeast China. Sustainability, 12(23), 10095. [DOI:10.3390/su122310095]
40. Řezáčová, V., Czakó, A., Stehlík, M., Mayerová, M., Šimon, T., Smatanová, M., & Madaras, M. (2021). Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Scientific Reports, 11(1), 12548. [DOI:10.1038/s41598-021-91653-x]
41. Schuman, G. E., Janzen, H. H., & Herrick, J. E. (2002). Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 116, 391-396. [DOI:10.1016/S0269-7491(01)00215-9]
42. Shi, W. (2011). Agricultural and ecological significance of soil enzymes: Soil carbon sequestration and nutrient cycling. In G. Shukla & A. Varma (Eds.), Soil Enzymology (pp. 43-60). Springer. [DOI:10.1007/978-3-642-14225-3_3]
43. Soltani Toularoud, A., & Asghari, S. (2021). Assessment the effect of slope aspect and position on some soil microbial indices in rangeland and forest. Environmental Erosion Research Journal, 11(1), 58-74. [DOI:10.52547/jeer.11.1.58]
44. Sun, S., Zhang, G., He, T., Song, S., & Chu, X. (2021). Effects of landscape positions and landscape types on soil properties and chlorophyll content of citrus in a sloping orchard in the Three Gorges Reservoir Area, China. Sustainability, 13(8), 4288. [DOI:10.3390/su13084288]
45. Tuo, D., Lu, Q., Wu, B., Li, Q., Yao, B., Cheng, L., & Zhu, J. (2023). Effects of wind-water erosion and topographic factor on soil properties in the Loess Hilly Region of China. Plants (Basel), 12(13), 2568. [DOI:10.3390/plants12132568]
46. Wang, B. R., An, S. S., Liang, C., Liu, Y., & Kuzyakov, Y. (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422. [DOI:10.1016/j.soilbio.2021.108422]
47. Wu, X. L., Wei, Y. J., Cai, C. F., Yuan, Z. J., Liao, Y. S., & Li, D. Q. (2020). Effects of erosion-induced land degradation on effective sediment size characteristics in sheet erosion. Catena, 195, 104843. [DOI:10.1016/j.catena.2020.104843]
48. Yang, Q., Peng, J., Ni, S., Zhang, C., Wang, J., & Cai, C. (2024). Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. Land Degradation & Development, 35(11), 3714-3726. [DOI:10.1002/ldr.5163]
49. Zhang, X., Pei, G., & Zhang, T. (2023). Erosion effects on soil microbial carbon use efficiency in the Mollisol cropland in northeast China. Soil Ecology Letters, 5(4). [DOI:10.1007/s42832-023-0176-4]
50. Zhao, C., Li, Y., Zhou, Z., Wu, R., Su, M., & Song, H. (2025). Simulated wind erosion and local dust deposition affect soil micro-food web by changing resource availability. Ecological Processes, 14(1), 7. [DOI:10.1186/s13717-024-00574-w]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb