1. Adelisardou, F., Mederly, P., & Minikina, T. (2023). Assessment of soil- and water-related ecosystem services with coupling the factors of climate and land-use change (Example of the Nitra region, Slovakia). Environmental Geochemistry and Health, 45(8), 6605-6620.
https://doi.org/10.1007/s10653-023-01656-y [
DOI:10.1007/s10653-023-01656-y.]
2. Anikwe, M. A. N., & Ife, K. (2023). The role of soil ecosystem services in the circular bioeconomy. Frontiers in Soil Science, 3.
https://doi.org/10.3389/fsoil.2023.1209100 [
DOI:10.3389/fsoil.2023.1209100.]
3. Cadel, M., Cousin, I., & Therond, O. (2023). Relationships between soil ecosystem services in temperate annual field crops: A systematic review. Science of The Total Environment, 902, 165930.
https://doi.org/10.1016/j.scitotenv.2023.165930 [
DOI:10.1016/j.scitotenv.2023.165930.]
4. Carollo, F. G., Ferro, V., & Serio, M. A. (2018). Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment. Journal of Hydrology, 560, 173-183.
https://doi.org/10.1016/j.jhydrol.2018.03.026 [
DOI:10.1016/j.jhydrol.2018.03.026.]
5. Chamani, R., Mostafaee Yonjali, S., & Sadeghi, S. H. R. (2023). Role of Biological Measures in Soil Erosion Processes using InVEST Model in the Sharghong Watershed, South Khorasan, Iran. Journal of Water and Soil Resources Conservation, 13(2), 95-108. https://civilica.com/doc/1830825 (In Persian).
6. Chang, X., Chen, H., Li, J., Fei, X., Xu, H., & Xiao, R. (2024). Travel characteristics of urban residents based on taxi trajectories in China: Beijing, Shanghai, Shenzhen, and Wuhan. Sustainability, 16(7), 2694.
https://doi.org/10.3390/su16072694 [
DOI:10.3390/su16072694.]
7. Chatterjee, S., Krishna, A.P., Sharma, A.P. (2013). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71(1), 357-374.
https://doi.org/10.1007/s12665-013-2439-3 [
DOI:10.1007/s12665-013-2439-3.]
8. da Gama, J. (2023). The role of soils in sustainability, climate change, and ecosystem services: challenges and opportunities. Ecologies, 4(3), 552-567.
https://doi.org/10.3390/ecologies4030036 [
DOI:10.3390/ecologies4030036.]
9. Deeb, M., Groffman, P. M., Blouin, M., Egendorf, S. P., Vergnes, A., Vasenev, V., Cao, D. L., Walsh, D., Morin, T., & Séré, G. (2020). Using constructed soils for green infrastructure - challenges and limitations. SOIL, 6(2), 413-434.
https://doi.org/10.5194/soil-6-413-2020 [
DOI:10.5194/soil-6-413-2020.]
10. Definiens. (2015). eCognition Developer 9.01 [Computer software]. Trimble. https://www.trimble.com.
11. Erfanian, M., Hosseinkhah, M., & Alijanpour, A. (2013). Introduction to Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) Methods in Spatial Modeling of Land Use Effects on Water Quality. Extension and Development of Watershed Management, 1(1). (In Persian).
12. ESRI. (2021). ArcMap (Version 10.8.2) [Computer software]. Environmental Systems Research Institute. https://www.esri.com.
13. FAO & IIASA. (2023). Harmonized World Soil Database version 2.0. Food and Agriculture Organization of the United Nations. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en.
14. FAO & IIASA. (2023 a). Harmonized World Soil Database version 2.0. Food and Agriculture Organization of the United Nations and International Institute for Applied Systems Analysis.
https://doi.org/10.4060/cc3823en [
DOI:10.4060/cc3823en.]
15. Filchev, L., & Kolev, V. (2023). Assessing of soil erosion risk through geoinformation sciences and remote sensing - a review. arXiv preprint arXiv. https://arxiv.org/abs/2310.08430.
16. Gbodjo, Y. J. E., Ienco, D., Leroux, L., Interdonato, R., Gaetano, R., & Ndao, B. (2020). Object-based multi-temporal and multi-source land cover mapping leveraging hierarchical class relationships. Remote Sensing, 12(17), 2814.
https://doi.org/10.3390/rs12172814 [
DOI:10.3390/rs12172814.]
17. Hermassi, T., El Ammami, H., & Ben, K. W. (2017). Impact of anthropogenic activities on erosive behavior of Nebhana Watershed, Tunisia. In M. Ouessar, Gabriels, D., Tsunekawa, A., Evett (Eds.), Water and land security in drylands (pp. 15-26). Springer.
https://doi.org/10.1007/978-3-319-54021-4_17 [
DOI:10.1007/978-3-319-54021-4_17.]
18. Hou, D. (2023). Soil health and ecosystem services. Soil Use and Management.
https://doi.org/10.1111/sum.12945 [
DOI:10.1111/sum.12945.]
19. IRIMO. (2024). Annual precipitation data (1990-2023). Iran Meteorological Organization. https://www.irimo.ir.
20. Jahandari, J., Hejazi, R., Jozi, S. A., & Moradi, A. (2022). Application of InVEST water supply ecosystem service model to predict water erosion in Bandar Abbas Basin. Quarterly Journal of Environmental Erosion Research 12(4), 101-123. http://dorl.net/dor/20.1001.1.22517812.1401.12.4.5.6 (In Persian).
21. Li, N., Zhang, Y., Wang, T., Li, J., Yang, J. & Luo, M. (2022). Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China? Journal of Environmental Management, 302, 114093.
https://doi.org/10.1016/j.jenvman.2021.114093 [
DOI:10.1016/j.jenvman.2021.114093.]
22. Marques, S. M., Campos, F.S., David, J., & Cabral, P. (2021). Modelling sediment retention services and soil erosion changes in Portugal: A spatio-temporal approach. ISPRS International Journal of Geo-Information, 10(4), 262.
https://doi.org/10.3390/ijgi10040262 [
DOI:10.3390/ijgi10040262.]
23. MEA. (2005). Ecosystems and Human Well-Being: Wetlands and Water Synthesis. Millennium Ecosystem Assessment.
24. Mwanga, E. W., Shaibu, A.-G., & Issaka, Z. (2024). Influence of long-term land use and land cover (LULC) changes on soil loss, sediment export, and deposition in the ungauged Bontanga watershed. H2Open Journal, 7(1), 93-113.
https://doi.org/10.2166/h2oj.2024.088 [
DOI:10.2166/h2oj.2024.088.]
25. Natural Capital Project. (2020). InVEST Data (Version 3.9) [Data set]. http://releases.naturalcapitalproject.org/?prefix=invest/3.9.0/data.
26. Natural Capital Project. (2023). InVEST (Version 3.14.1) [Computer software]. Natural Capital Project. https://naturalcapitalproject.stanford.edu/invest.
27. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Department of Agriculture.
28. Roose, E. (1977). Erosion et ruissellement en Afrique de l'Ouest, vingt années de mesures en parcelles expérimentales. ORSTOM.
29. Sadeghi, S. H., & Tavangar, S. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Natural Hazards, 77(1), 429-443.
https://doi.org/10.1007/s11069-015-1608-y [
DOI:10.1007/s11069-015-1608-y.]
30. Sharma, S., Kumar, A., & Pandey, A. (2023). Soil erosion in relation to land use/land cover change in the Dehar watershed, Himachal Himalaya, North India. Frontiers in Forests and Global Change, 6.
https://doi.org/10.3389/ffgc.2023.1124677 [
DOI:10.3389/ffgc.2023.1124677.]
31. Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D., Fisher, D., Glowinski, K., & Griffin, R. (2020). InVEST 3.8.7 User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
32. Stoorvogel, J. J., & Mulder, V. L. (2021). A comparison, validation, and evaluation of the S-world global soil property database. Land, 10(5), 544.
https://doi.org/10.3390/land10050544 [
DOI:10.3390/land10050544.]
33. Sun, Y., Liu, D., & Wang, P. (2022). Urban simulation incorporating coordination relationships of multiple ecosystem services. Sustainable Cities and Society, 76(2), 103432.
https://doi.org/10.1016/j.scs.2021.103432 [
DOI:10.1016/j.scs.2021.103432.]
34. Tamire, C., Elias, E., & Argaw, M. (2022). Spatiotemporal dynamics of soil loss and sediment export in Upper Bilate River Catchment (UBRC), Central Rift Valley of Ethiopia. Heliyon, 8(11).
https://doi.org/10.1016/j.heliyon.2022.e11220 [
DOI:10.1016/j.heliyon.2022.e11220.]
35. USGS. (2014). Shuttle radar topography mission (SRTM) 1 arc-second global digital elevation model (DEM). United States Geological Survey. https://earthexplorer.usgs.gov.
36. USGS. (2022). Landsat Collection-2 Level-2 science products. https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products.
37. Wischmeier, W. H., & Smith, D.D. (1978). Predicting rainfall erosion losses: A guide to conservation planning (Agricultural Handbook No. 537). United States Department of Agriculture.
38. WRM. (2023). Watersheds of Iran [Shapefile]. Water Resources Management of Iran. https://data.wrm.ir.
39. Yang, J., Zhai, D. L., Fang, Z., Alatalo, J. M., Yao, Z., Yang, W., Su, Y., Bai, Y., Zhao, G., & Xu, J. (2023). Changes in and driving forces of ecosystem services in tropical southwestern China. Ecological Indicators, 149, 110180.
https://doi.org/10.1016/j.ecolind.2023.110180 [
DOI:10.1016/j.ecolind.2023.110180.]
40. Zabihi, M., Moradi, H. R., Khaledi Darvishan, A., & Gholamalifard, M. (2021). Application of InVEST ecosystem services model to prioritize sub-watersheds of Talar in terms of soil erosion, sediment retention and yield. Environmental Science and Water Engineering, 7(2), 293-303. [
DOI:10.22034/jewe.2020.257980.1470 (In Persian).]