1. Arellano, P., Tansey, K., Balzter, H., & Boyd, D. S. (2015). Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution, 205, 225-239. [
DOI:10.1016/j.envpol.2015.05.041]
2. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
3. Caputo, J. (2009). Sustainable forest biomass: Promoting renewable energy and forest stewardship. Washington, DC, USA: Environmental and Energy Study Institute.
4. FAO (Food and Agriculture Organization of the United Nations). (2002). Land use. https://www.fao.org
5. Galvao, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote sensing of Environment, 94(4), 523-534. [
DOI:10.1016/j.rse.2004.11.012]
6. Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. [
DOI:10.1016/S0034-4257(96)00067-3]
7. García Cárdenas, D. A., Ramón Valencia, J. A., Alzate Velásquez, D. F., & Palacios Gonzalez, J. R. (2018, November). Dynamics of the indices NDVI and GNDVI in a rice growing in its reproduction phase from multi-spectral aerial images taken by drones. In International Conference of ICT for Adapting Agriculture to Climate Change (pp. 106-119). Cham: Springer International Publishing. [
DOI:10.1007/978-3-030-04447-3_7]
8. Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32-42. [
DOI:10.1016/j.gloenvcha.2018.05.001]
9. Hormozgan Regional Water Company, 2022
10. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. [
DOI:10.1016/0034-4257(88)90106-X]
11. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213. [
DOI:10.1016/S0034-4257(02)00096-2]
12. Joulaei, H., & Vafaeinejad, A. (2023). Application of machine learning methods for classification of Landsat 9 satellite imagery to assess urban land use area (Case study: West of Tehran). Journal of Remote Sensing and Spatial Information Research, 2(1), 113-126. (in Persian)
13. Kazemi, M., & Jafarpoor, A. (2024). Time series classification of land use using spectral indices, Sentinel-2 imagery, and variable training samples in Google Earth Engine (GEE). Iranian Journal of Watershed Science and Engineering, 18(67), 1-15. (in Persian)
14. Lawrence, R. L., Wood, S. D., & Sheley, R. L. (2006). Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100(3), 356-362. [
DOI:10.1016/j.rse.2005.10.014]
15. Maitima, J. M., Mugatha, S. M., Reid, R. S., Gachimbi, L. N., Majule, A., Lyaruu, H., ... & Mugisha, S. (2009). The linkages between land use change, land degradation and biodiversity across East Africa. African Journal of Environmental Science and Technology, 3(10).
16. Mariye, M., Mariyo, M., Changming, Y., Teffera, Z. L., & Weldegebrial, B. (2022). Effects of land use and land cover change on soil erosion potential in Berhe district: A case study of Legedadi watershed, Ethiopia. International Journal of River Basin Management, 20(1), 79-91. [
DOI:10.1080/15715124.2020.1767636]
17. Milton, E. J. (1989). On the suitability of Kodak neutral test cards as reflectance standards. International Journal of Remote Sensing, 10(6), 1041-1047. [
DOI:10.1080/01431168908903943]
18. Rong, C., & Fu, W. (2023). A comprehensive review of land use and land cover change based on knowledge graph and bibliometric analyses. Land use, 12(8), 1573. [
DOI:10.3390/land12081573]
19. Sheram, K. (1993). The environmental data book: A guide to statistics on the environment and development. Washington, DC: The World Bank.
20. Siasar, H., Salari, A., Bahrami, M., & Hamidifar, H. (2025). Integrating remote sensing and meteorological analysis for monitoring drought conditions in arid regions: a case study from Sistan and Baluchestan province, Iran. Theoretical and Applied Climatology, 156(5), 291. [
DOI:10.1007/s00704-025-05527-7]
21. Sivakumar, M. V. K. (2003). Satellite remote sensing and GIS applications in agricultural meteorology. Agricultural and Forest Meteorology, 118(1-2), 1-5.
22. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. [
DOI:10.1016/0034-4257(79)90013-0]
23. Veraverbeke, S., Gitas, I., Katagis, T., Polychronaki, A., Somers, B., & Goossens, R. (2012). Assessing post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 28-39. [
DOI:10.1016/j.isprsjprs.2011.12.007]
24. Wang, G., Han, L., Tang, X. Y., & Jin, Z. C. (2012). Temporal and spatial variation of vegetation in the Jinsha River basin. Resources and Environment in the Yangtze Basin, 21(10), 1191-1196.
25. Zhou, Y., Zhang, L., Fensholt, R., Wang, K., Vitkovskaya, I., & Tian, F. (2015). Climate contributions to vegetation variations in central Asian drylands: Pre- and post-USSR collapse. Remote Sensing, 7(3), 2449-2470. [
DOI:10.3390/rs70302449]