سال 13، شماره 4 - ( زمستان 1402 )                   جلد 13 شماره 4 صفحات 217-194 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyghalani S, Ramezanpour H, Yaghmaeian Mahabadi N, Fazeli sangani M. Considering Relationship between Temperature Sensitivity of Soil Organic Carbon Decomposition with some of the Soil Properties and Topographic Indices in Guilan Tea Gardens. E.E.R. 2023; 13 (4) :194-217
URL: http://magazine.hormozgan.ac.ir/article-1-786-fa.html
صیقلانی شیرین، رمضانپور حسن، یغماییان مهابادی نفیسه، فاضلی سنگانی محمود. بررسی ارتباط بین حساسیت دمایی تجزیه کربن آلی خاک با برخی از ویژگی‌های خاک و شاخص‌های توپوگرافی در باغ‌های چای استان گیلان. پژوهش هاي فرسايش محيطي. 1402; 13 (4) :194-217

URL: http://magazine.hormozgan.ac.ir/article-1-786-fa.html


گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت ، hasramezanpour@yahoo.com
چکیده:   (2074 مشاهده)
حساسیت دمایی تنفس خاک (Q10)، مؤلفه­ای کلیدی برای تخمین بازخورد تنفس خاک به گرمایش جهانی است. هدف از پژوهش حاضر، بررسی پاسخ تنفس خاک به تغییرات دما با Q10 در خاک زیر کشت چای است. به همین منظور از دویست نقطه باغ­های چای در شرق و غرب استان گیلان در عمق صفر تا چهل سانتی­متری نمونه­برداری شد و آزمایش­های تعیین کربن آلی، کربن فعال،pH ، جرم مخصوص ظاهری، ظرفیت تبادل کاتیونی، زیست­توده میکروبی و تنفس میکروبی خاک انجام شد. همچنین برخی شاخص­های توپوگرافی مانند ارتفاع، شیب و جهت شیب با استفاده از نقشه DEM در محیط نرم­افزارArcGIS 10.5  به دست آمد و سایر شاخص­ها مانند شاخص خیسی، طول شیب، موقعیت نسبی شیب، سطح ویژه حوضه، شبکه آبراهه اصلی، فاصله عمودی تا شبکه آبراهه، شاخص همگرایی، انحنای نیمرخ و انحنای سطح، از نقشه DEM در محیط نرم­افزار 2.1.0 Saga GIS استخراج شد. برای اندازه­گیری Q10 نیز از دو تیمار دمایی 25 و 35 درجه سانتی­گراد استفاده شد. نتایج نشان داد که Q10 با کربن بیوماس میکروبی، کربن آلی و کربن فعال خاک بیشترین همبستگی منفی را دارد؛ به عبارتی، هر چه کربن آلی خاک و بیوماس میکروبی آن بیشتر باشد، مقدار Q10 کاهش می­یابد. همچنین نتایج حاصل از اجرای تجزیه به مؤلفه­های اصلی (PCA)، شش مؤلفه را با مقادیر ویژه 93/3، 20/2، 1/2، 8/1، 6/1 و 4/1 نشان داد که به ترتیب 1/23، 9/12، 2/12، 4/10، 41/9 و 99/7 درصد از تغییرات همبستگی بین مقادیر را توجیه می­کند. تأثیرگذارترین مؤلفه با بار عاملی 981/0 و واریانس 125/23 مربوط به کربن آلی خاک است؛ به عبارتی، می­توان انتظار داشت در مناطقی که خاک زیر کشت چای، کربن آلی و فعالیت میکروبی بیشتری دارد، در زمان افزایش دما به دلیل داشتن حساسیت دمایی (Q10) کمتر، نسبت به افزایش دما آسیب­پذیری کمتری دارد.
متن کامل [PDF 569 kb]   (475 دریافت)    
نوع مطالعه: مستخرج از پایان‌نامه / رساله / طرح پژوهشی | موضوع مقاله: سناریوسازی و پیشی‌بینی وجوه مختلف فرسایش
دریافت: 1401/12/26 | انتشار: 1402/10/10

فهرست منابع
1. Atkin, O. K.; Edwards, E. J.; & B. R. Loveys, 2000. Response of Root Respiration to Changes in Temperature and Its Relevance to Global Warming. New Phytologist, 147, 141e154. [DOI:10.1046/j.1469-8137.2000.00683.x]
2. Banaei, M. H.; Bybordi, M.; Malakouti, M. J.; & A. Moameni, 2005. The Soils of Iran, New Achievements in Perception, Management and Use, Soil and Water Research Institute. 471p. (in Persian)
3. Bartlett, M. S., 1954. A Note On The Multiplying Factors For Various Chi Square Approximations, Journal Of The Royal Statistical Society, 16, 296-298. [DOI:10.1111/j.2517-6161.1954.tb00174.x]
4. Behtari, B.; Jafarian, Z.; & A. Hossenali, 2018. Evaluation Of Temperature Sensitivity Of Soil Organic Matter Decomposition In Relation To Rangeland Management, Element Stoichiometry And Soil Depth, Journal Of Environmental Studies, 44(2). (In Persian).
5. Bond-Lamberty, B., & A. Thomson., (2010). A Global Database Of Soil Respiration Data. Biogeosciences. 7, 1915e1926. [DOI:10.5194/bg-7-1915-2010]
6. Bond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M.; & R. Vargas, 2018. Globally Rising Soil Heterotrophic Respiration Over Recent Decades, Nature, 560, 80e83. [DOI:10.1038/s41586-018-0358-x]
7. Brejda, J. J.; Moorman, T. B.; Karlen, D. L.; & T. H. Dao, 2000. Identification Of Regional Soil Quality Factors And Indicators. Central And Southern High Plains, Soil Science Society Of America Journal, 64, 2115-2124. [DOI:10.2136/sssaj2000.6462115x]
8. Capek, P.; Starke, R.; Hofmockel, K. S.; Bond-Lamberty, B.; & N. Hess, 2019. Apparent Temperature Sensitivity Of Soil Respiration Can Result From Temperature Driven Changes In Microbial Biomass, Soil Biology. Biochemistry, 135, 286e293. [DOI:10.1016/j.soilbio.2019.05.016]
9. Chen, H., & H. Tian., (2005). Does A General Temperature-Dependent Q10 Model Of Soil Respiration Exist At Biome And Global Scale?. Integrative Plant Biology. 47 (11), 1288e1302. [DOI:10.1111/j.1744-7909.2005.00211.x]
10. Chen, B.; Liu, S.; Ge, J.; & J. Chu, 2010. Annual And Seasonal Variations Of Q10 Soil Respiration In The Subalpine Forests Of The Eastern Qinghai-Tibet Plateau, China, Soil Biology And Biochemistry, 42(10), 1735-1742. Relevance To Global Warming. New Phytologist. 147, 141e154. [DOI:10.1016/j.soilbio.2010.06.010]
11. Davidson, E. A., & I. A. Janssens, 2006a. Temperature Sensitivity Of Soil Carbon Decomposition And Feedbacks To Climate Change. Nature. 440 (7081), 165e173. [DOI:10.1038/nature04514]
12. Ding, J.; Chen, L.; Zhang, B.; Liu, L.; Yang, G.; Fang, K.; Chen, Y.; Li, F.; Kou, D.; Ji, C.; Luo, Y.; & Y. Yang, 2016. Linking Temperature Sensitivity Of Soil CO2 Release To Substrate, Environmental, And Microbial Properties Across Alpine Ecosystems, Global Biogeochemistry Cycles, 30(9), 1310e1323. [DOI:10.1002/2015GB005333]
13. Djukic, L.; Zehetner, F.; Tatzber, M.; & M. H. Gerzabek, 2010. Soil Organic-Matter Stocks And Characteristics Along An Alpine Elevation Gradient, Plant Nutrition Soil Science, 173, 30-38. Https://Doi.Org/10.1002/Jpln.200900027. [DOI:10.1002/jpln.200900027]
14. Fallah, Gh.; Asadi, M.; & A. Entezari, 2014. Climatic Zoning Of Guilan Province With Multivariate Methods, Geography And Planning, (54), 235-251. (In Persian).
15. Fóti, S.; Balogh, J.; Herbst, M.; Papp, M.; Koncz, P.; Bartha, S.; Zimmermann, Z.; Komoly, C.; Szabó, G.; Margóczi, K.; Acosta, M.; & Z. Nagy, 2016. Meta-Analysis Of Field Scale Spatial Variability Of Grassland Soil CO2 Efflux: Interaction Of Biotic And Abiotic Drivers, Catena, 143, 78-89. [DOI:10.1016/j.catena.2016.03.034]
16. Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; Van Vuuren, D. P.; & C. Le Qu_Er_E, 2014. Persistent Growth Of CO2 Emissions And Implications For Reaching Climate Targets, Nature. Geoscience, 7, 709e715. [DOI:10.1038/ngeo2248]
17. Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastia, M. T.; Thompson, R.; & et al, 2007. Soil Organic Carbon Storage In Mountain Grasslands Of The Pyrenees, Effects Of Climate And Topography, Biogeochemistry. 82, 279-289. Https://Doi.Org/10.1007/S10533-007-9071-9. [DOI:10.1007/s10533-007-9071-9]
18. Gee, G. W., & J. W. Bauder., (1986). Particle-size analysis. In: Methods of soil Analysis, Part 1, Physical and Mineralogical Methods, Klute A (Ed). Agronomy Monograph No. 9 (2nded). American Society of Agronomy, Madison, WI, 383-411. [DOI:10.2136/sssabookser5.1.2ed.c15]
19. Ghasemi, A., 2004. Considering The Performance Of The Tea Structure Reform Plan In Organizing Tea Industry, Economical Journal, (5), 51, 52. (In Persian) [DOI:10.5979/cha.2004.98_51]
20. Guo, Z.; Adhikari, K.; Chellasamy, M.; Greve, M. B.; Owens, P. R.; & M. H. Greve, 2019. Selection Of Terrain Attributes And Its Scale Dependency On Soil Organic Carbon Prediction, Geoderma, 340, 303-312. [DOI:10.1016/j.geoderma.2019.01.023]
21. Hassink, J.; Chenu, C.; Dalenberg, J. W.; Bolem, J.; & L. A. Bouwman, 1994. Interactions between soil biota, soil organic matter and soil structure. In: 15th World Congress of Soil Science, vol. 49. Acapulco, Mexico, pp. 57-58.
22. Hair, J. F.; Black, B.; Babin, B.; Anderson, R. E.; & R. L. Tatham, 2006. Multivariate Data Analysis (6th Ed.). New Jersy: Prentice Hall.
23. Hezarjaribi, A.; Nosrati Karizak., F.; Abdollahnezhad, K.; & Kh. Ghorbani, 2013. The Prediction Possibility Of Soil Cation Exchange Capacity By Using Of Easily Accessible Soil Parameters, Journal Of Water And Soil, 27(4), 712-719.
24. Hibbard, K.; Law, B.; & M. Reichstein, 2005. An Analysis Of Soil Respiration Across Northern Hemisphere Temperate Ecosystems, Biogeochemistry, 73, 29-70. [DOI:10.1007/s10533-004-2946-0]
25. IPCC., 2013. Summary For Policymakers. In: Stocker, T. F.; Qin, D.; Plattner, G. K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I To The Fifth Assessment Report Of The Intergovernmental Panel On Climate Change. Cambridge University Press, Cambridge, United Kingdom And New York, NY, USA, Pp. 9-27.
26. Jia, Y.; Kuzyakov, Y.; Wang, G.; Tan, W.; Zhu, B.; & X. Feng, 2020. Temperature Sensitivity Of Decomposition Of Soil Organic Matter Fractions Increases With Their Turnover Time, Land Degradation And Development, 31(5), 632-645. [DOI:10.1002/ldr.3477]
27. Jiang, L.; He, Z.; Liu, J.; Xing, C.; Gu, X.; Wei, C.; & et al., 2019. Elevation Gradient Altered Soil C, N, And P Stoichiometry Of Pinus Taiwanensis Forest On Daiyun Mountain. Forests, 10, 1089. Https://Doi.Org/10.3390/ F10121089. [DOI:10.3390/f10121089]
28. Jiang, J.; Shi, P. L.; Zong, N.; Fu, G.; Shen, Z. X.; Zhang, X. Z.; & M. H. Song, 2015. Climatic Patterns Modulate Ecosystem And Soil Respiration Responses To Fertilization In An Alpine Meadow On The Tibetan Plateau, China Ecology Research, 30, 3e13. [DOI:10.1007/s11284-014-1199-1]
29. Johnson, D. W.; Cheng, W.; & J. T. Ball, 2000. Effects Of CO2 And Nitrogen Fertilization On Soils Planted With Ponderosa Pine, Plant Soil, 224, 99e113.
30. Kaiser, H., 1974. An Index Of Factorial Simplicity, Psychometrika, 39, 31-36. [DOI:10.1007/BF02291575]
31. Kane, E. S.; Valentine, D. W.; Schuur, E. A. G.; & K. Dutta, 2005. Soil Carbon Stabilization Along Climate And Stand Productivity Gradients In Black Spruce Forests Of Interior Alaska, Canadian Journal Of Forest Research, 35, 2118-2129 [DOI:10.1139/x05-093]
32. Klute, A., 1986. Methods Of Soil Analysis: Physical And Mineralogical Methods. Part1. Second Edition. [DOI:10.2136/sssabookser5.1.2ed]
33. Kirschbaum, M. U., 1995. The Temperature Dependence Of Soil Organic Matter Decomposition, And The Effect Of Global Warming On Soil Organic C Storage, Soil Biology And Biochemistry, 27(6), 753-60. [DOI:10.1016/0038-0717(94)00242-S]
34. Kirschbaum, M. U. F., 2006. The Temperature Dependence Of Organic-Matter Decomposition - Still A Topic Of Debate. Soil Biology, Biochemistry, 38(9), 2510e2518. [DOI:10.1016/j.soilbio.2006.01.030]
35. Kunkel, M. L.; Flores, A. N.; Smith, T. J.; Mcnamara, J. P.; & S. G. Benner, 2011. A Simplified Approach For Estimating Soil Carbon And Nitrogen Stocks In Semi-Arid Complex Terrain, Geoderma, 165(1), 1-11. [DOI:10.1016/j.geoderma.2011.06.011]
36. Kuzyakov, Y., 2006. Sources Of CO2 Efflux From Soil And Review Of Partitioning Methods. Soil Biology, Biochemistry, 38(3), 425e448. [DOI:10.1016/j.soilbio.2005.08.020]
37. Leifeld, J., & J. Fuhrer., (2005). The Temperature Response Of CO2 Production From Bulk Soils And Soil Fractions Is Related To Soil Organic Matter Quality. Biogeochemistry. 75, 433-453. [DOI:10.1007/s10533-005-2237-4]
38. Lomolino, M. V., 2001. Elevation Gradients Of Species-Density: Historical And Prospective Views, Global Ecology And Biogeography, 10, 3-13. [DOI:10.1046/j.1466-822x.2001.00229.x]
39. Luo, S.; Liu, G.; Li, Z.; Hu, C.; Gong, L.; Wang, M.; & et al. 2014. Soil Respiration Along An Altitudinal Gradient In A Subalpine Secondary Forest In China, Iforest, 8, 526-532. [DOI:10.3832/ifor0895-007]
40. Ma, J.; Liu, R.; Li, C.; Fan, L.; Xu, G.; & Y. Li, 2020. Herbaceous Layer Determines The Relationship Between Soil Respiration And Photosynthesis In A Shrub-Dominated Desert Plant Community, Plant Soil, 449, 193-207. Https://Doi.Org/10.1007/S11104-020-04484-6. [DOI:10.1007/s11104-020-04484-6]
41. Min, K.; Lehmeier, C. A.; Ballantyne, F.; Tatarko, A.; & S. A. Billings, 2014. Differential Effects Of Ph On Temperature Sensitivity Of Organic Carbon And Nitrogen Decay, Soil Biology Biochemistry, 76, 193e200. [DOI:10.1016/j.soilbio.2014.05.021]
42. Momeni, M., & A. F. Ghayoumi., (2018). Statistical Analysis With SPSS. 293p. (In Persian)
43. Nadelhoffer, K. J.; Giblin, A. E.; Shaver, G. R.; & A. E. Linkins, 1992. Microbial Processes And Plant Nutrient Availability In Arctic Soils: 281-300. In: Chapin III, F. S.; Jefferies, R. L.; Reynolds, J. F.; Shaver, G. R.; & J. Svoboda, (Eds.). Arctic Ecosystems In A Changing Climate: An Ecophysiological Perspective. Academic Press, San Diego, California, 468p. [DOI:10.1016/B978-0-12-168250-7.50019-5]
44. Page, A., & et al., 1982. Methods Of Soil Analysis. Chemical And Microbiological Properties. Part2. Second Edition. [DOI:10.2134/agronmonogr9.2.2ed]
45. Peng, Y.; Song, S. Y.; Li, Z. Y.; Li, S.; Chen, G. T.; & et al., 2020. Influences Of Nitrogen Addition And Aboveground Litter-Input Manipulations On Soil Respiration And Biochemical Properties In A Subtropical Forest, Soil Biology And Biochemistry, 142, 107694. DOI 10.1016/J.Soilbio.2019.107694. [DOI:10.1016/j.soilbio.2019.107694]
46. Prietzel, J.; Zimmermann, L.; Schubert, A.; & D. Christophel, 2016. Organic Matter Losses In German Alps Forest Soils Since The 1970s Most Likely Caused By Warming, Nature Geoscience, 1-8, Https://Doi.Org/10.1038/NGEO2732. [DOI:10.1038/ngeo2732]
47. Qiu, X.; Luè, M. K.; Huang, J. X.; Li, W.; Zhao, B. J.; Zhang, H.; & et al., 2016. Characteristics Of Soil Organic Carbon Mineralization At Different Temperatures In Severely Eroded Red Soil, Chinese Journal Of Plant Ecology, 40(3), 236-245. [DOI:10.17521/cjpe.2015.0364]
48. Rafiee, F.; Habashi, H.; Rahmani, R.; & Kh. Sagheb-Talebi., 2019. Temperature Sensitivity Of Soil Carbon Dioxide Efflux In Beech-Hornbeam Stand (Case Study: Shast-Kalateh Forest, Gorgan), Iranian Journal Of Forest And Poplar Research, 27(1). (In Persian)
49. Raich, J. W.; Potter, C. S.; & D. Bhagawati, 2002. Interannual Variability In Global Soil Respiration, 1980e94, Global Change Biol, 8(8), 800e812. [DOI:10.1046/j.1365-2486.2002.00511.x]
50. Raich, J. W., & W. H. Schlesinger., (1992). The Global Carbon Dioxide Flux In Soil Respiration And Its Relationship To Vegetation And Climate. Tellus B. 44(2), 81-99. [DOI:10.3402/tellusb.v44i2.15428]
51. Ritchie, J. C.; Mccarty, G. W.; Venteris, E. R.; & T. C. Kaspar, 2007. Soil And Soil Organic Carbon Redistribution On The Landscape, Geomorphology, 89(1-2), 163-171. [DOI:10.1016/j.geomorph.2006.07.021]
52. Rodeghiero, M., & A. Cescatti., (2005). Main Determinants Of Forest Soil Respiration Along An Elevation/Temperature Gradient In The Italian Alps. Global Change Biology. 11, 1024-1041. Https://Doi.Org/10.1111/J.1365-2486.2005.00963.X. [DOI:10.1111/j.1365-2486.2005.00963.x]
53. Schlesinger, W. H., & J. A. Andrews., (2000). Soil Respiration And The Global Carbon Cycle. Biogeochemistry. 48, 7-20. [DOI:10.1023/A:1006247623877]
54. Sheidai, E.; Sepehry, A.; Barani, H.; Motamedi, J.; & F. Shahbz, 2019. Establishing A Suitable Soil Quality Index For Semi-Arid Rangeland Ecosystems In Northwest Of Iran, Journal Of Soil Science And Plant Nutrition, Https://Doi.Org/10.1007/S42729-019-00065-4. [DOI:10.1007/s42729-019-00065-4]
55. Shedayi, A. A.; Xu, M.; Naseer, L.; & B. Khan, 2016. Altitudinal Gradients Of Soil And Vegetation Carbon And Nitrogen In A High Altitude Nature Reserve Of Karakoram Ranges, Springer Plus, 5, 320. Https://Doi.Org/10. 1186/S40064-016-1935-9 PMID: 27066349 PLOS ONE Soil Respiration Variation Along An Altitudinal Gradient In The Italian Alps PLOS.
56. Shi, Z.; Wang, J. S.; He, R.; Fang, Y. H.; Xu, Z. K.; Quan, W.; & et al., 2008. Soil Respiration And Its Regulating Factor Along An Elevation Gradient In Wuyi Mountain Of Southeast China, Chinese Journal Ecology, 27(4), 563-568.
57. Sparks, D., 1996. Methods Of Soil Analysis. Part3. Chemical Methods. SSSA Book Series No.5. Soil. Science. Society. America. [DOI:10.2136/sssabookser5.3]
58. Statistical Yearbook Of Iran., 2020. Land And Climate. National Meteorological Organization, General Department Of Information And Communication Technology. (In Persian). Http://Salnameh.Sci.Org.Ir
59. Subke, J. A., & M. Bahn., (2010). On The 'Temperature Sensitivity' Of Soil Respiration: Can We Use The Immeasurable To Predict The Unknown?, Soil Biology And Biochemistry, 42(9), 1653-1656. [DOI:10.1016/j.soilbio.2010.05.026]
60. Tian, Q.; He, H.; Cheng, W.; Bai, Z.; Wang, Y.; & X. Zhan, 2016. Factors Controlling Soil Organic Carbon Stability Along A Temperate Forest Altitudinal Gradient, Scientific Report, 6, 18783. Https://Doi.Org/10.1038/Srep18783 PMID: 26733344. [DOI:10.1038/srep18783]
61. Tian, Z.; Jia, X.; Liu, T.; Ma, E.; Xue L.; Hu, Y.; & Q. Zheng, 2022. Seasonal Change In Soil Respiration With An Elevation Gradient In Abies Nephrolepis Forest In North China, Phyton International Journal Of Experimental Botany, 91, 7. [DOI:10.32604/phyton.2022.020329]
62. Walkley, A., & I. A. Black., (1934). An Examination Of Degtjareff Method For Determining Soil Organic Matter, And A Proposed Modification Of The Chromic Acid Titration Method. Soil Science. 37, 29-38. [DOI:10.1097/00010694-193401000-00003]
63. Wang, Q.; Zhao, X.; Chen, L.; Yang, Q.; Chen, S.; & W. Zhang, 2018a. Global Synthesis Of Temperature Sensitivity Of Soil Organic Carbon Decomposition: Latitudinal Patterns And Mechanisms, Functional Ecology, 33, 514e523. [DOI:10.1111/1365-2435.13256]
64. Wang, Q.; Liu, S.; & P. Tian, 2018b. Carbon Quality And Soil Microbial Property Control The Latitudinal Pattern In Temperature Sensitivity Of Soil Microbial Respiration Across Chinese Forest Ecosystems, Global Change Biology, 24, 2841e2849. [DOI:10.1111/gcb.14105]
65. Weil, R. R.; Islam, K. R.; Stine, M. A.; Gruver, J. B.; & S. E. Samson-Liebig, 2003. Estimating Active Carbon For Soil Quality Assessment: A Simplified Method For Laboratory And Field Use, American Journal Of Alternative Agriculture, 18, 3-17. [DOI:10.1079/AJAA2003003]
66. Xu, Z.; Tang, S.; Xiong, L.; Yang, W.; Yin, H.; Tu, L.; Wu, F.; Chen, L.; & B. Tan, 2015. Temperature Sensitivity Of Soil Respiration In China's Forest Ecosystems: Patterns And Controls, Applied. Soil Ecology, 93, 105e110. [DOI:10.1016/j.apsoil.2015.04.008]
67. Yu, H.; Sui, Y.; Chen, Y.; Bao, T.; & X. Jiao, 2022. Soil Organic Carbon Mineralization And Its Temperature Sensitivity Under Different Substrate Levels In The Mollisols Of Northeast China, Life, 12, 712. [DOI:10.3390/life12050712]
68. Zhang, Z. S.; Dong, X. J.; Xu, B. X.; Chen, Y. L.; Zhao, Y.; Gao, Y. H.; & et al., 2015. Soil Respiration Sensitivities To Water And Temperature In A Revegetated Desert, Journal Of Geophysical Research. Biogeoscience, 120, 773-787. [DOI:10.1002/2014JG002805]
69. Zheng, Z. M.; Yu, G. R.; Fu, Y. L.; Wang, Y. S.; Sun, X. M.; & Y. H. Wang, 2009. Temperature Sensitivity Of Soil Respiration Is Affected By Prevailing Climatic Conditions And Soil Organic Carbon Content: A Trans-China Based Case Study, Soil Biology And Biochemistry, 41(7), 1531-1540. [DOI:10.1016/j.soilbio.2009.04.013]
70. Zhu, R.; Zheng, Z.; Li, T.; Zhang, X.; He, Sh.; Wang, Y.; Liu, T.; & W. Li, 2017. Dynamics Of Soil Organic Carbon Mineralization In Tea Plantations Converted From Farmland At Western Sichuan, China. Plos, One, 12(9), E0185271. [DOI:10.1371/journal.pone.0185271]
71. Zimmermann, M.; Meir, P.; Bird, M. I.; Malhi, Y.; & A. J. Q. Ccahuana, 2010. Temporal Variation And Climate Dependence Of Soil Respiration And Its Components Along A 3000m Altitudinal Tropical Forest Gradient, Global Biogeochemistry Cycle, 24, GB4012. Https://Doi.Org/10.1029/2010GB003787. [DOI:10.1029/2010GB003787]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb