year 13, Issue 4 (Winter 2024 2023)                   E.E.R. 2023, 13(4): 56-82 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raeesi M, Zolfaghari A, Rahimi M, Kaboli S H. Estimation of Vegetation Changes Concerning Annual Rainfall and Temperature in Semnan Province. E.E.R. 2023; 13 (4) :56-82
URL: http://magazine.hormozgan.ac.ir/article-1-809-en.html
Faculty of Desert Studies, Department of Desert and Arid Land Management, Semnan University, Semnan , azolfaghari@semnan.ac.ir
Abstract:   (671 Views)
1- Introduction
Vegetation is one of the most important components of terrestrial ecosystems, which plays a vital role in carbon regulation and balancing, energy exchange and climate stability. Also, temperature and rainfall are the most important influential factors in changing the vegetation index, NDVI. Understanding the relationship between rainfall, NDVI and temperature is essential in forestry planning over each region. Accordingly, the main objectives of this research are 1) to monitor the annual changes of NDVI from 2001 to 2020 using linear regression’s slope and Sen’s slope estimator methods, and 2) to investigate and determine the relationship between NDVI and the climatic components, specifically rainfall and temperature, in Semnan province.
2- Methodology
Semnan province was selected as the study area to evaluate the relationship between climatic components and vegetation cover by using remote sensing data. The NDVI data was extracted from the Terra MODIS product in a spatial resolution of 500 meters and was processed to evaluate vegetation changes in Semnan province during the years between 2001 and 2020 on monthly scale. After that, the monthly rainfall and temperature data were obtained from both synoptic and climatology stations; then they were converted into annual scale. Furthermore, the rainfall and temperature reanalysis grid-base data, ERA5-Land, was downloaded in about 9 km spatial resolution from 2001 to 2020. Reanalysis data usually contains systematic error compared to observational data, which can affect the output results and requires to be corrected. Consequently, we utilized one of the recent bias-correction approaches, the Quantile Mapping (QM) bias-correction method, to correct biases over the entire distribution of the rainfall and temperature reanalysis data. At this point, each set of the rainfall and temperature grid-based data was resampled to 500 meters based on the spatial resolution of NDVI pixels. Next, each series of rainfall and temperature data were corrected based on QM method from the years 2001 to 2020 according to the availability of the NDVI time series data. The relationship between annual rainfall and temperature with the NDVI was calculated in each month of the year (2001-2020). In this study, linear regression and the non-parametric method of the Sen’s slope estimator were used to investigate the changes in NDVI trend for each pixel from 2001 to 2020. Finally, to check the accuracy of the relationship between vegetation, temperature and rainfall, the coefficient of determination was used.
3- Results 
The linear regression’s slope indicated that 25% of ​​Semnan’s area had vegetation variations close to zero in each month during the years 2001 to 2020. It means that NDVI values did not change significantly and it was almost unchanged. Moreover, based on the Sen's slope estimator, the results showed that there was no noticeable change in decreasing or increasing the amount of vegetation in about 75% of ​​Semnan’s area. The analyses also showed that the coefficient of determination between NDVI and rainfall varied from 18% to 44% in different months, and the highest relationship values were observed in September and December. Moreover, in more than 50% of the Semnan’s area, the relationship between NDVI and rainfall has varied from zero to more than 42%. The results indicated that vegetation cover has no significant relationship with annual rainfall in both winter and spring. Furthermore, in 50% of the study area, the estimated NDVI variation indicated zero or negative values in each month, which confirms that the vegetation cover has not changed significantly or it has decreased slightly in response to the temperature.
4- Discussion
In recent years, the evaluation of changes in NDVI time series has been developed by using satellite images and remote sensing techniques. In addition, the climate components like rainfall and temperature are among the factors affecting the growth of vegetation cover, which has attracted the attention of many researchers. By considering the linear regression’s slope and Sen’s slope estimator, the results showed that NDVI did not change significantly during the years 2001 to 2020 in Semnan province, but it decreased in some areas. Moreover, the effect of rainfall and temperature demonstrated that vegetation has either direct or indirect relationships with rainfall or temperature in some months (positive or negative values, respectively). The linear regression’ slope between annual temperature and NDVI showed that in 50% of ​​Semnan’s area, NDVI variation was estimated to be nearly zero or negative in each month. Generally, in arid regions like Semnan province, the growth of plants is controlled by two climatic factors, rainfall and temperature. In arid and semi-arid regions (where the amount of rainfall is low, such as Semnan province), or in regions where the percentage of humidity is high, the maximum relationship between NDVI and the rainfall was not observed.
5- Conclusions
In arid and semi-arid regions, due to the fragility of the ecosystem, the reduction of vegetation cover can have irreparable consequences such as increasing the movement of soil particles. This action will eventually lead to wind erosion and will increase dust in the region. Therefore, the present study was conducted to evaluate the monthly changes of NDVI from 2001 to 2020 by the linear regression’s slope and Sen’s slope methods. In addition, the relationship between NDVI and climatic components of rainfall and temperature were discussed. The findings showed that results of the linear regression’s slope and Sen's slope estimator are both almost the same. The relationship between rainfall and NDVI indicated that in 75% of Semnan’s area, the estimated value of coefficient of determination had the highest value in September and December. It means that with the increase of rainfall, vegetation cover also increases. Based on the linear regression’s slope between the annual temperature and NDVI, it was observed that in almost 50% of the study area, NDVI variations were approximately estimated to be zero or negative in each month, which means the vegetation cover has not significantly changed or even decreased by changing temperature. In future studies, it is suggested to use other remote sensing NDVI products such as Landsat satellite and even other climate reanalysis data to have a more accurate view of vegetation cover changes in the study area.
Full-Text [PDF 897 kb]   (118 Downloads)    

Received: 2023/07/15 | Published: 2023/12/31

References
1. Akhavan, H.; Amoushahi, S.; & A. Setudeh, 2018. An Investigation on the Same Type of Vegetation NDVI Changes in Different Temperature Levels of the Mountain (Case Study: ShirKouh Mountains), Scientific and Research Journals Management System, 16(1), 37-50. (In Persian).
2. Akhavan, H.; Amoushahi, S.; & A. Setudeh, 2018. An Investigation on the Same Type of Vegetation NDVI Changes in Different Temperature Levels of the Mountain (Case Study: ShirKouh mountains), Scientific and Research Journals Management System, 16(1), 37-50. (In Persian).
3. Allen, P. A., 2017. Sediment Routing Systems, Cambridge University Press, New York, NY. [DOI:10.1017/9781316135754]
4. Amini, E.; Zolfaghari, A.; Kaboli, H.; & M. Rahimi, 2022. Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province), Iranian Journal of Soil and Water Research, 53(9), 2027-2044. doi: 10.22059/ijswr.2022.343710.669279 (In Persian).
5. Amjad, M.; Yilmaz, M. T.; Yucel, I.; & K. K. Yilmaz, 2020. Performance Evaluation of Satellite-and Model-Based Precipitation Products Over Varying Climate and Complex Topography, Journal of Hydrology, 584, 124707. [DOI:10.1016/j.jhydrol.2020.124707]
6. Avazpour, N.; Faramarzi, M.; Omidipour, R.; & H. Mehdizadeh, 2021. Monitoring the Drought Effects on Vegetation Changes Using Satellite Imagery (Case Study: Ilam Catchment), Geography and Environmental Sustainability, 11(4), 125-143. https://doi.org/ 10.22126/ ges. 2022.7130.2472 [DOI:10.22126/ ges. 2022.7130.2472]
7. Beck, H.; Pan, M.; Roy, T.; Weedon, G.; Pappenberger, F.; van Dijk, A.; Huffman, G.; Adler, R.; & E. Wood, 2019. Daily Evaluation of 26 Precipitation Datasets Using Stage-IV Gauge-Radar Data for the CONUS, Hydrology and Earth System Sciences, 23, 207-224. https:// doi.org/10.5194/hess-23-207-2019 [DOI:10.5194/hess-23-207-2019]
8. Bližňák, V.; Pokorná, L.; & Z. Rulfová, 2022. Assessment of the Capability of Modern Reanalyses to Simulate Precipitation in Warm Months Using Adjusted Radar Precipitation, Journal of Hydrology: Regional Studies, 42, 101121. [DOI:10.1016/j.ejrh.2022.101121]
9. Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; & N. Khadka, 2021. Spatial Performance of Multiple Reanalysis Precipitation Datasets on the Southern Slope of Central Himalaya. Atmospheric Research, 250, 105365. https:// doi.org/10.1016 /j.atmosres. 2020.105365 [DOI:10.1016/j.atmosres.2020.105365]
10. Darvand, S.; Khosravi, H.; Eskandari Damaneh, H.; & H. Eskandari Damaneh, 2021. Investigating the Trend of NDVI Changes Derived from MODIS Sensor Imagery (Case Study: Isfahan Province), Drnl, 1(2), 69-79.
11. Dastorani, M.; Komaki, Ch. B.; Khosravi, H.; & Z. Ghelichipour, 2019. Investigation of the Trend of Rainfall and Vegetation Changes in Arid and Semiarid Regions (Case Study:Khorasan Razavi, Iran), Journal of Arid Biome, 9(1), 11-19. https://doi.org/ 10.29252/ aridbiom. 2019.1540 [DOI:10.29252/ aridbiom. 2019.1540]
12. Diallo, M.; Ern, M.; & F. Ploeger, 2021. The advective Brewer-Dobson Circulation in the ERA5 Reanalysis: Climatology, Variability, and Trends, Atmos. Chem. Phys., 21(10), 7515-7544. [DOI:10.5194/acp-21-7515-2021]
13. Ding, M., Yili, Z., Liu, L., Wei, Z., Zhaofeng, W., & B. Wanqi, 2007. The Relationship Between NDVI and Precipitation on the Tibetan Plateau, Journal of Geographical Sciences, 17. [DOI:10.1007/s11442-007-0259-7]
14. Duan, H.; Xue, X.; Wang, T.; Kang, W.; Liao, J.; & S. Liu, 2021. Spatial and Temporal Differences in Alpine Meadow, Alpine Steppe and All Vegetation of the Qinghai-Tibetan Plateau and Their Responses to Climate Change, Remote Sensing, 13(4), https:// doi.org /10. 3390/rs13040669 [DOI:10.3390/rs13040669]
15. Duveiller, G.; Hooker, J.; & A. Cescatti, 2018. The Mark of Vegetation Change on Earth's Surface Energy Balance. Nature Communications, 9. [DOI:10.1038/s41467-017-02810-8]
16. Ebrahimi, Z.; Roustaei, F.; & M. Soleimani sardo, 2022. Analysis of Temporal Vegetation Changes in Western Rangelands of Kerman Province Using MODIS Level 3 Data and its Relation to Climate Factors, Journal of Arid Regions Geographic Studies, 10(37), 40-52.
17. Fang, G. H.; Yang, J.; Chen, Y. N.; & C. Zammit, 2015. Comparing Bias Correction Methods in Downscaling Meteorological Variables for a Hydrologic Impact Study in an Arid Area in China, Hydrol. Earth Syst. Sci., 19(6), 2547-2559. [DOI:10.5194/hess-19-2547-2015]
18. Fang, M., 2016. Application of Bayesian Model Averaging in the Reconstruction of the Past Climate Change Using PMIP3/CMIP5 Multimodel Ensemble Simulations, Journal of Climate, 29, 175-189. [DOI:10.1175/JCLI-D-14-00752.1]
19. Firouzi, F.; Tavosi, T.; & P. Mahmoudi, 2019. Investigating the Sensitivity of NDVI and EVI Vegetation Indices to Dry and Wet Years in Arid and Semi-Arid Regions (Case study: Sistan plain, Iran), Geographical Data, 28(110), 163-179. SID. https://sid.ir/paper/253128/en, (In Persian).
20. Garai, S.; Khatun, M.; Singh, R.; Sharma, J.; Pradhan, M.; Ranjan, A.; Rahaman, S. M.; Khan, M. L.; & S. Tiwari, 2022. Assessing Correlation Between Rainfall, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Eastern India, Safety in Extreme Environments, 4(2), 119-127. [DOI:10.1007/s42797-022-00056-2]
21. Ghalami, V.; Saghafian, B.; & T. Raziei, 2022. Investigating the Effect of Bias Correction on Quality Improvement of NEX-GDDP Downscaled Precipitation Data, Iran-Water Resources Research, 18(1), 68-83.
22. Ghebrezgabher, M. G.; Yang, T.; Yang, X.; & T. Eyassu Sereke, 2020. Assessment of NDVI Variations in Responses to Climate Change in the Horn of Africa, The Egyptian Journal of Remote Sensing and Space Science, 23(3), 249-261. [DOI:10.1016/j.ejrs.2020.08.003]
23. Gleixner, S.; Demissie, T.; & G. T. Diro, 2020. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa?, Atmosphere, 11(9). https://doi.org /10.3390/ atmos 11090996 [DOI:10.3390/atmos11090996]
24. Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galán, S.; & F. Francés, 2023. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951-2020), Atmospheric Research, 284, 106606. [DOI:10.1016/j.atmosres.2023.106606]
25. Gudmundsson, L.; Bremnes, J. B.; Haugen, J.; & T. Skaugen, 2012. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Quantile Mapping - A Comparison of Methods, Hydrology and Earth System Sciences Discussions, 9, 6185-6201. https://doi.org /10.5194/hessd-9-6185-2012 [DOI:10.5194/hessd-9-6185-2012]
26. Hadian, F.; Hoseini, S. Z.; & M. Seyed Hoseini, 2015. Monitoring vegetation changes using precipitation data and satellite images in north-west of Iran, IJRDR, 21(4), 756-768. https://doi.org /10.22092/ijrdr.2016.13078
27. Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; & C. Schneider, 2020. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau, Water, 12(11). [DOI:10.3390/w12113271]
28. Holben, B. N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11), 1417-1434. https://doi.org/ 10. 1080/01431168608948945 https://doi.org/10.1080/01431168608948945 [DOI:10. 1080/01431168608948945]
29. Hu, M., & Xia, B., (2019). A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degradation & Development. 30(4), 359-370. [DOI:10.1002/ldr.3221]
30. Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; & l. Li, 2019. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging, Water, 11(3), 579. [DOI:10.3390/w11030579]
31. Huang, C.; Yang, Q.; Guo, Y.; Zhang, Y.; & l. Guo, 2020. The pattern, change and driven factors of vegetation cover in the Qin Mountains region, Scientific Reports, 10. https://doi.org /10.1038/s41598-020-75845-5 [DOI:10.1038/s41598-020-75845-5]
32. Huth, R., & R. Beranova., (2021). How to Recognize a True Mode of Atmospheric Circulation Variability. Earth and Space Science. 8. [DOI:10.1029/2020EA001275]
33. Jia, L.; Li, Z.; Xu, G.; Ren, Z.; Li, P.; Cheng, Y.; Zhang, Y.; Wang, B.; Zhang, J.; & S. Yu, 2020. Dynamic change of vegetation and its response to climate and topographic factors in the Xijiang River basin, China, Environmental Science and Pollution Research, 27(11), 11637-11648. [DOI:10.1007/s11356-020-07692-w]
34. Kolachian, R.; Saghafian, B.; & S. Moazami, 2021. Evaluation of Post-Processing and Bias Correction of Monthly Precipitation and Temperature Forecasts in Karun Basin, Iran-Water Resources Research, 16(4), 98-111.
35. Li, H.; Li, Y.; Gao, Y.; Zou, C.; Yan, S.; & J. Gao, 2016. Human Impact on Vegetation Dynamics around Lhasa, Southern Tibetan Plateau, China, Sustainability, 8, 1146. https://doi .org/10.3390/su8111146 [DOI:10.3390/su8111146]
36. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; Martens, B.; Miralles, D. G.; Piles, M.; Rodríguez-Fernández, N. J.; Zsoter, E.; Buontempo, C.; & J. N. Thépaut, 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13(9), 4349-4383. [DOI:10.5194/essd-13-4349-2021]
37. Muñoz-Sabater, J.; Lawrence, H.; Albergel, C.; Rosnay, P.; Isaksen, L.; Mecklenburg, S.; Kerr, Y.; & M. Drusch, 2019. Assimilation of SMOS brightness temperatures in the ECMWF Integrated Forecasting System, Quarterly Journal of the Royal Meteorological Society, 145(723), 2524-2548. [DOI:10.1002/qj.3577]
38. Najafi, Z.; Darvishsefat, A.; Fatehi, P.; & P. Attarod, 2020. Time series analysis of vegetation dynamic trend using Landsat data in Tehran Megacity, Iranian Journal of Forest, 12(2), 257-270, (In Persian).
39. Nogueira, M., 2020. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences, Journal of Hydrology, 583, 124632. [DOI:10.1016/j.jhydrol.2020.124632]
40. Pelosi, A.; Terribile, F.; D'Urso, G.; & G. B. Chirico, 2020. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration, Water, 12(6). [DOI:10.3390/w12061669]
41. Reichle, R. H.; Draper, C. S.; Liu, Q.; Girotto, M.; Mahanama, S. P. P.; Koster, R. D.; & G. J. M. De Lannoy, 2017. Assessment of MERRA-2 Land Surface Hydrology Estimates, Journal of Climate, 30(8), 2937-2960. [DOI:10.1175/JCLI-D-16-0720.1]
42. Sam Khaniani, A., & A. Mohammadi., (2022). Comparison of ERA5-Land reanalysis data with surface observations over Iran. Iranian Journal of Geophysics. 16(1), 195-212. https:// doi. org /10.30499/ijg.2022.313494.1376
43. Shabanipoor, M.; Darvish Sefat, A. A.; & R. Rahmani., 2019. Long-term trend analysis of vegetation changes using MODIS-NDVI time series during 2000-2017 (Case study: Kurdistan province), Journal of Forest and Wood Products, 72(3), 193-204.
44. Shafei, H., & S. M. Hosseini., )2011(. A study of vegetation in Sistan region through satellite data. 3(9), 91-105, Iranian Journal of Plant Ecophysiology, SID. https:// sid.ir /paper /188374/fa. (In Persian).
45. Shen, M.; Piao, S.; Chen, X.; An, S.; Fu, Y. H.; Wang, S.; Cong, N.; & I. A. Janssens, 2016. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau, Global Change Biology, 22(9), 3057-3066. https:// doi.org /10. 1111 /gcb. 13301 [DOI:10.1111/gcb.13301]
46. Sheridan, S. C.; Lee, C. C.; & E. T. Smith, 2020. A Comparison Between Station Observations and Reanalysis Data in the Identification of Extreme Temperature Events, Geophysical Research Letters, 47(15), e2020GL088120. [DOI:10.1029/2020GL088120]
47. Spadoni, G. L.; Cavalli, A.; Congedo, L.; & M. Munafò, 2020. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography, Remote Sensing Applications: Society and Environment, 20, 100419. https:// doi. org/10.1016/j.rsase.2020.100419 [DOI:10.1016/j.rsase.2020.100419]
48. Stefanidis, K.; Varlas, G.; Vourka, A.; Papadopoulos, A.; & E. Dimitriou, 2021. Delineating the relative contribution of climate related variables to chlorophyll-a and phytoplankton biomass in lakes using the ERA5-Land climate reanalysis data, Water Research, 196, 117053. [DOI:10.1016/j.watres.2021.117053]
49. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; & K. L. Hsu, 2018. A review of global precipitation data sets: Data sources, estimation, and intercomparisons, Reviews of Geophysics, 56(1), 79-107. [DOI:10.1002/2017RG000574]
50. Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; & Y. Xu, 2018. Elevation‐dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982-2013, International Journal of Climatology, 38(4), 2029-2038. [DOI:10.1002/joc.5314]
51. Tarek, M.; Brissette, F. P.; & R. Arsenault, 2020. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci, 24(5), 2527-2544. [DOI:10.5194/hess-24-2527-2020]
52. Wang, Y. R.; Hessen, D. O.; Samset, B. H.; & F. Stordal, 2022. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data, Remote Sensing of Environment, 280, 113181. https://doi. org/ 10. 1016/j.rse.2022.113181 [DOI:10.1016/j.rse.2022.113181]
53. Weedon, G. P.; Gomes, S.; Viterbo, P.; Shuttleworth, W. J.; Blyth, E.; Österle, H.; Adam, J. C.; Bellouin, N.; Boucher, O.; & M. Best, 2011. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. Journal of Hydrometeorology, 12(5), 823-848. https://doi. org/ 10. 1175 /20 11JHM1369.1 [DOI:10.1175/2011JHM1369.1]
54. Zakeri, A.; Naderi, R.; & V. Poozesh, 2020. An investigation of plant species distribution in Semnan province (Case study: Herbarium of Damghan University), Journal of Plant Research (Iranian Journal of Biology), 33 (4), 891-913, (In Persian).
55. Zhang, Y.; Jiang, X.; Lei, Y.; & S. Gao, 2022. The contributions of natural and anthropogenic factors to NDVI variations on the Loess Plateau in China during 2000-2020, Ecological Indicators, 143, 109342. [DOI:10.1016/j.ecolind.2022.109342]
56. Zhe, M., & X. Zhang., (2021). Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecological Indicators. 124, 107431. https://doi. org/ 10. 1016/j.ecolind.2021.107431 [DOI:10.1016/j.ecolind.2021.107431]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb