سال 14، شماره 2 - ( تابستان 1403 )                   جلد 14 شماره 2 صفحات 160-141 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

eghtedarnezhad M, Malekinezhad H, Rafiei sardooi E. Soil moisture estimation based on MODIS NDVI and LST productions in areas with no data. E.E.R. 2024; 14 (2) :141-160
URL: http://magazine.hormozgan.ac.ir/article-1-825-fa.html
اقتدارنژاد مینا، ملکی‌نژاد حسین، رفیعی ساردوئی الهام. برآورد رطوبت خاک بر اساس تولیداتNDVI و LST مودیس در مناطق فاقد داده. پژوهش هاي فرسايش محيطي. 1403; 14 (2) :141-160

URL: http://magazine.hormozgan.ac.ir/article-1-825-fa.html


گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد & گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد ، hmalekinezhad@yazd.ac.ir
چکیده:   (1506 مشاهده)
برآورد رطوبت خاک سطحی برای مدیریت بهینه منابع آب و خاک ضروری است. رطوبت خاک سطحی، متغیری مهم در چرخه آبی طبیعت است که نقش مهمی در تعادل جهانی آب و انرژی و فرآینده­های هیدرولوژیک، اکولوژیک و هواشناسی دارد. رطوبت خاک به­دلیل تغییر­پذیری ویژگی­های خاک، توپوگرافی، پوشش گیاهی و پویایی نیوار در زمان و مکان تغییر می­کند. اندازه­گیری رطوبت خاک، به­طور مستقیم با استفاده از اندازه­گیری­های میدانی مانند نوترون­متر و [1]TDR یا به­طور غیر مستقیم به­وسیله توابع انتقالی و یا سنجش از دور انجام می­شود. از آنجا که اندازه­گیری­های میدانی معمولا در پهنه­های وسیع هم هزینه­بر و هم زمان­بر و گاهی نشدنی می­باشد، برای برآورد رطوبت خاک در مقیاس­های مکانی بسیار بزرگ، می­توان روش­هایی همچون سنجش از دور را به­کار گرفت. این تحقیق با هدف بررسی امکان برآورد رطوبت لایه سطحی خاک با استفاده از تصاویر سنجنده مودیس و مقایسه آن با داده­های زمینی انجام شد. در این مطالعه، رطوبت خاک در عمق­های صفر تا سی سانتی­متر با استفاده از رابطه بین شاخص گیاهی ماهواره­ای ([2]NDVI)، دمای سطح زمین (LST[3]) و رطوبت مشاهده­ای خاک در مقیاس منطقه­ای با تفکیک مکانی یک کیلومتر­مربع برای سال­های 2021 و 2022 برآورد شد. ضریب تعیین R2 و AIC معادلات رگرسیون به­ترتیب 78/0 و 2/166 به­دست آمد که نشان می­‌دهد رویکرد برآورد بر­ اساس داده­‌های NDVI و LST مودیس، مناسب بوده و می­‌تواند برای تخمین رطوبت خاک طی سال­‌های 2007 تا 2022 استفاده شود.
 
[1] Time Domain Reflectometry
[2] Normalized Difference Vegetation Index
[3] Land Surface Temperature
 
متن کامل [PDF 785 kb]   (325 دریافت)    

فهرست منابع
1. Adegoke, J. O., & Carleton, A. M. (2002). Relations between soil moisture and satellite vegetation indices in the US Corn Belt. Journal of hydrometeorology, 3(4), 395-405.‏ https://doi.org/10.1175/1525-7541(2002)003<0395:RBSMAS>2.0.CO;2 [DOI:10.1175/1525-7541(2002)0032.0.CO;2]
2. Altman, D. G., & Bland, J. M. (2005). Standard deviations and standard errors. Bmj, 331(7521), 903.‏ [DOI:10.1136/bmj.331.7521.903]
3. Bai, X., Zhang, L., He, C., & Zhu, Y. (2020). Estimating regional soil moisture distribution based on NDVI and land surface temperature time series data in the upstream of the Heihe River Watershed, Northwest China. Remote Sensing, 12(15), 2414. [DOI:10.3390/rs12152414]
4. ‏4. Babaeian, E., Homaee, M., & Noroozi, A. A. (2013). Deriving and validating point spectrotransfer functions in VIS-NIR-SWIR range to estimate soil water retention. Journal of Water and Soil Resources Conservation, 2(3), 27-42 (‏ in persian).
5. Babazadeh, H., Aghdam, E. N., Aghighi, H., Shamsnia, S. A., & Dehkordi, D. K. (2012). Estimation of soil surface moisture in arid and semi arid rangelands using remotely sensed Temperature/Vegetation Index measurements (TVX)(case study: Khorasan province). Iranian Journal of Range and Desert Research, 19(1), 120-132.
6. Baghdadi, N., Aubert, M., Cerdan, O., Franchistéguy, L., Viel, C., Martin, E., ... & Desprats, J. F. (2007). Operational mapping of soil moisture using synthetic aperture radar data: application to the Touch basin (France). Sensors, 7(10), 2458-2483.‏ [DOI:10.3390/s7102458]
7. Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 121(6), 2658-2678.‏ [DOI:10.1002/2015JD024131]
8. Bai, X., Zhang, L., He, C., & Zhu, Y. (2020). Estimating regional soil moisture distribution based on NDVI and land surface temperature time series data in the upstream of the Heihe River Watershed, Northwest China. Remote Sensing, 12(15), 2414.‏ [DOI:10.3390/rs12152414]
9. Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing of Environment, 45(3), 311-326. [DOI:10.1016/0034-4257(93)90113-C]
10. Box, G. E., Hunter, W. H., & Hunter, S. (1978). Statistics for experimenters (Vol. 664). New York: John Wiley and sons.‏
11. Cai, J., Zhang, Y., Li, Y., Liang, X. S., & Jiang, T. (2017). Analyzing the characteristics of soil moisture using GLDAS data: A case study in eastern China. Applied Sciences, 7(6), 566.‏ [DOI:10.3390/app7060566]
12. Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173. [DOI:10.1080/02757259409532220]
13. Chauhan, N. S., Miller, S., & Ardanuy, P. (2003). Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. International Journal of Remote Sensing, 24(22), 4599-4622.‏ [DOI:10.1080/0143116031000156837]
14. Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., & Han, M. (2013). Evaluation of AMSR‐E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10), 4466-4475.‏ [DOI:10.1002/jgrd.50301]
15. Colliander, A., Fisher, J. B., Halverson, G., Merlin, O., Misra, S., Bindlish, R., ... & Yueh, S. (2017). Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15. IEEE Geoscience and Remote Sensing Letters, 14(11), 2107-2111.‏ [DOI:10.1109/LGRS.2017.2753203]
16. Gutman, G. G. (1990). Towards monitoring droughts from space. Journal of climate, 3(2), 282-295.‏ https://doi.org/10.1175/1520-0442(1990)003<0282:TMDFS>2.0.CO;2 [DOI:10.1175/1520-0442(1990)0032.0.CO;2]
17. Hanley, J. A. (1987). Standard error of the kappa statistic. Psychological bulletin, 102(2), 315.‏ [DOI:10.1037/0033-2909.102.2.315]
18. Halder, B., Bandyopadhyay, J., & Banik, P. (2021). Evaluation of the climate change impact on urban heat island based on land surface temperature and geospatial indicators. International Journal of Environmental Research, 15, 819-835.‏ [DOI:10.1007/s41742-021-00356-8]
19. Hosseini Chamani, F., Farrokhian Firouzi, A., & Amerykhah, H. (2019). Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices. Journal of Water and Soil Conservation, 26(4), 239-254 (in persian).
20. Khanmohammadi, F., Homaee, M., & Noroozi, A. A. (2015). Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Water and Soil Resources Conservation, 4(2), 37-45 (in persian).
21. Khazaei, S., Raeini Sarjaz, M., Valizadeh, E., & Ghorbani, K. (2017). Estimation of Surface Soil Moisture from Satellite Images Using Vegetation and Thermal Indices. Iranian Journal of Irrigation & Drainage, 11(2), 151-162 (in persian).
22. Kim, T. K. (2015). T test as a parametric statistic. Korean journal of anesthesiology, 68(6), 540-546.‏ [DOI:10.4097/kjae.2015.68.6.540]
23. Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in geosciences, 5, 89-97.‏ [DOI:10.5194/adgeo-5-89-2005]
24. Lin, M. L., Cao, Y., Juan, C. H., Chen, C. W., Hsueh, I. C., Wang, Q. B., & Lee, Y. T. (2008, July). Monitoring drought dynamics in the ejin oasis using drought indices from modis data. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium (Vol. 4, pp. IV-834). IEEE.‏ [DOI:10.1109/IGARSS.2008.4779852]
25. Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., ... & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14-37.‏ [DOI:10.1016/j.rse.2012.12.008]
26. Mahara, G., Wang, C., Yang, K., Chen, S., Guo, J., Gao, Q., ... & Guo, X. (2016). The association between environmental factors and scarlet fever incidence in Beijing region: using GIS and spatial regression models. International Journal of Environmental Research and Public Health, 13(11), 1083.‏ [DOI:10.3390/ijerph13111083]
27. Mehrabi, M., Hamzeh, S., Alavipanah, S. K., Kiavarz, M., & Ziaee, R. (2019). Estimating soil moisture using remotely sensed data and surface energy balance system. Watershed Engineering and Management, 11(3), 759-770 (in persian).
28. Miles, J. (2014). Tolerance and variance inflation factor. Wiley statsref: statistics reference online.‏ [DOI:10.1002/9781118445112.stat06593]
29. Nourouzi, A. E., Behbahani, S., Rahimi, K. A., & Aghighi, H. (2008). Surface Soil Moisture Model with NDVI (Case Study: Rangelands of Khorasan Province). Journal of Environmental Studies, 48, 127-136.‏
30. Park, S., Im, J., Jang, E., & Rhee, J. (2016). Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and forest meteorology, 216, 157-169.‏ [DOI:10.1016/j.agrformet.2015.10.011]
31. Patel, N. R., Anapashsha, R., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing, 30(1), 23-39.‏ [DOI:10.1080/01431160802108497]
32. Pablon, C. Spennemann, Juan A. River, A. Celeste Saulo, Olga C.(2015) Penalba, A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America, Journal of Hydrometeorology, Volume 16, 158-171. [DOI:10.1175/JHM-D-13-0190.1]
33. Polo, J., Wilbert, S., Ruiz-Arias, J. A., Meyer, R., Gueymard, C., Suri, M., ... & Cebecauer, T. (2016). Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy, 132, 25-37. [DOI:10.1016/j.solener.2016.03.001]
34. Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., & Han, M. (2013). Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 138, 1-9.‏ [DOI:10.1016/j.rse.2013.07.003]
35. Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological society, 85(3), 381-394.‏ [DOI:10.1175/BAMS-85-3-381]
36. Rui, H., Teng, W. L., Vollmer, B., Mocko, D. M., Beaudoing, H. K., & Rodell, M. (2011, December). NASA Giovanni portals for NLDAS/GLDAS online visualization, analysis, and intercomparison. In 2011 American Geophysical :union: Fall Meeting (No. GSFC. CPR. 5791.2011).‏
37. Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1-12. [DOI:10.1016/j.isprsjprs.2011.10.009]
38. Shirazi, M., Akhavan Qalibaf, M., Matinfar, H., & Nakhkesh, M. (2019). Comparison of MODIS and OLI sensor image data integration methods to improve the visibility of dust in industrial areas. Scientific Journal of Pasture and Desert Research of Iran, 26(3), 570-586 (in persian).
39. Sanchez-Lorenzo, A., Wild, M., & Trentmann, J. (2013). Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983-2005). Remote sensing of environment, 134, 355-366.‏ [DOI:10.1016/j.rse.2013.03.012]
40. Sen, L. K., & Shitan, M. (2002). The performance of AICC as an order selection criterion in ARMA time series models. Pertanika Journal of Science and Technology, 10(1), 25-33.‏
41. Song, C., Jia, L., & Menenti, M. (2013). Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 935-942.‏ [DOI:10.1109/JSTARS.2013.2272053]
42. Tucker, C. J. (1989). Comparing SMMR and AVHRR data for drought monitoring. International Journal of Remote Sensing, 10(10), 1663-1672.‏ [DOI:10.1080/01431168908903997]
43. Thompson, C. G., Kim, R. S., Aloe, A. M., & Becker, B. J. (2017). Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic and Applied Social Psychology, 39(2), 81-90.‏ [DOI:10.1080/01973533.2016.1277529]
44. Wang,X. 2005. Relation between ground- based soil moisture and satellite image - based NDVI.
45. Wang, L., Qu, J. J., Zhang, S., Hao, X., & Dasgupta, S. (2007). Soil moisture estimation using MODIS and ground measurements in eastern China. International Journal of Remote Sensing, 28(6), 1413-1418.‏ [DOI:10.1080/01431160601075525]
46. Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3, 237-247.‏ [DOI:10.1007/s11707-009-0023-7]
47. Wang, H., Li, X., Long, H., Xu, X., & Bao, Y. (2010). Monitoring the effects of land use and cover type changes on soil moisture using remote-sensing data: A case study in China's Yongding River basin. Catena, 82(3), 135-145.‏ [DOI:10.1016/j.catena.2010.05.008]
48. Western, A. W., & Grayson, R. B. (1998). The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water resources research, 34(10), 2765-2768.‏ [DOI:10.1029/98WR01833]
49. Zhao, S., Yang, Y., Qiu, G., Qin, Q., Yao, Y., Xiong, Y., & Li, C. (2010). Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. International Journal of Applied Earth Observation and Geoinformation, 12(5), 351-358.‏ [DOI:10.1016/j.jag.2010.04.007]
50. Zuo, J., Xu, J., Li, W., & Yang, D. (2019). Understanding shallow soil moisture variation in the data-scarce area and its relationship with climate change by GLDAS data. Plos one, 14(5), e0217020.‏ [DOI:10.1371/journal.pone.0217020]
51. Zhang, T., Stackhouse Jr, P. W., Cox, S. J., Mikovitz, J. C., & Long, C. N. (2019). Clear-sky shortwave downward flux at the Earth's surface: Ground-based data vs. satellite-based data. Journal of Quantitative Spectroscopy and Radiative Transfer, 224, 247-260.‏ [DOI:10.1016/j.jqsrt.2018.11.015]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb