سال 14، شماره 2 - ( تابستان 1403 )                   جلد 14 شماره 2 صفحات 179-161 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahani M, Taleghani S, Akbari M. Quantitative evaluation of soil erodibility potential using SLEMSA model (Case study: Karkheh watershed, Lorestan province, Iran). E.E.R. 2024; 14 (2) :161-179
URL: http://magazine.hormozgan.ac.ir/article-1-838-fa.html
جهانی محمد، طالقانی سجاد، اکبری مرتضی. ارزیابی کمّی پتانسیل فرسایش‌پذیری خاک با استفاده از مدل SLEMSA (مطالعه موردی: حوضه آبخیز کرخه استان لرستان، ایران). پژوهش هاي فرسايش محيطي. 1403; 14 (2) :161-179

URL: http://magazine.hormozgan.ac.ir/article-1-838-fa.html


گروه جغرافیا، دانشگاه فردوسی مشهد. ایران ، sajjad.taleghani@mail.um.ac.ir
چکیده:   (1108 مشاهده)
فرسایش خاک یکی از مهم‏ترین چالش‌ها و مخاطرات محیطی در جهان بوده و از موانع اصلی دستیابی به توسعه پایدار محسوب می‌شود. به طوریکه، شناسایی و ارزیابی عوامل موثر فرسایش خاک و پهنه‌بندی مناطق در معرض خطر، می‌توانند به اقدامات مناسب حفاظتی با هدف دستیابی به توسعه پایدار کمک فراوانی نمایند. بنابراین، هدف از پژوهش حاضر، ارزیابی کمی فرسایش خاک در حوزه آبخیز کرخه در استان لرستان در غرب ایران، با استفاده از مدل جهانی SLEMSA است. برای این منظور، ابتدا مقادیر پارامترهای اصلی مدل همچون شیب، طول جریان و انرژی جنبشی باران با استفاده از داده‏های سنجش از دوری سامانه گوگل ارث انجین (GEE)، عامل فرسایش‏پذیری خاک با استفاده از اطلاعات پایگاه داده هماهنگ خاک جهان (HWSD) و فاکتور پوشش گیاهی به کمک داده‏های کاربری اراضی ESA-CCI بدست آمد. سپس با تلفیق لایه‏های رقومی در محیط سیستم اطلاعات جغرافیایی، نقشه فرسایش‏پذیری حوزه آبخیز کرخه تهیه شد. تحلیل فضایی نقشه فرسایش‌پذیری خاک نشان داد که حوزه آبخیز کرخه دامنه فرسایش‏پذیری در حدود 61/10 تا 76/65  تن در هکتار در سال را دارد. به نحویکه  7/11 درصد از مساحت حوزه آبخیز کرخه که عمدتاً در بخش‌های شرق و شمال شرقی منطقه مورد مطالعه قرار دارند، در کلاس خطر فرسایش‏پذیری زیاد بوده که میزان فرسایشی در حدود 73/14 تا 76/65 تن در هکتار در سال را به خود اختصاص داده است. ارزیابی شدت فرسایش خاک و پهنه‌بندی مناطق در معرض خطر به مسئولین و کارشناسان ادارات اجرایی در انجام اقدامات حفاظتی-کنترلی و کاهش هدررفت بیشتر خاک کمک فراوانی خواهد نمود.
متن کامل [PDF 641 kb]   (205 دریافت)    

فهرست منابع
1. Ajon, A. T.; Obi, M. E.; & P. Agber, 2018. Prediction of Soil Loss using SLEMSA and USLE Erosion Models for an Agricultural Field in Makurdi, Benue State, Nigeria. International Journal of Innovative Agriculture & Biology Research, 6 (3), 21-30.
2. Akbari, M.; Ownegh, M.; Asgari, H.; Sadoddin, A.; & H. Khosravi, 2016. Desertification Risk Assessment and Management Program. Global Journal of Environmental Science and Management, 2(4), 365-380.
3. Akbari, M.; Neamatollahi, E.; Memarian, H.; & M. Alizadeh Noughani, 2023. Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran. Natural Hazards, 117, 1689-1710. [DOI:10.1007/s11069-023-05925-y]
4. Akbari, M.; Neamatollahi, E.; Alizadeh Noughani, M.; & H. Memarian, 2022. Spatial distribution of soil erosion risk and its economic impacts using an integrated CORINE-GIS approach. Environmental Earth Sciences, 81(10), 1-17. [DOI:10.1007/s12665-022-10405-w]
5. Arabkhedri, M. 2005. A Study on the Suspended Sediment Yield in River Basins of Iran. Iran-Water Resources Research, 1(2), 51-60. (In Persian).
6. Asghari, Seras S.; Belvasi, M.; Zinali, B.; Belvasi, I.; & A. Davoudi, 2014. Investigation of soil erosion risk in Doab basin of Lorestan by network analysis and RS and GIS techniques. Environmental Erosion Research Journal, 4 (2):72-89. (In Persian).
7. Bagheri, S.; Ansari, M.; & A. Norouzi, 2022. Prioritization of Erosion Prone Sub-Watersheds using MCDM Methods in Roudzard Watershed, Khuzestan Province. Journal of Water and Soil Science, 26 (3):35-54. (In Persian). [DOI:10.47176/jwss.26.3.39923]
8. Bayat, R.; Gerami, Z.; Arabkhedri, M.; Peyrowan, H. R.; & R. Kazemi, 2021. Investigating the Status of Some Indicators of Assessment of Watersheds and Prioritizing Sub-Catchments in Terms of Erosion Reduction (Case Study of Karkheh Watershed). Journal of Watershed Management Research. 12(23), 108-118. (In Persian). [DOI:10.52547/jwmr.12.23.108]
9. Behrahi, K; Sayyad, G. A.; Landi, A.; & H. Payrowan, 2018. Investigating the Effects of Land Use, Land Slope and Soil Properties on Sediment Yield in the Sub-Catchment of Karkheh Watershed Basin in Lorestan Using an Artificial Rainfall Simulator. Environmental Erosion Research Journal, 8 (2):1-22. (In Persian).
10. Bhargav, K. S.; & J. K. Singh, 2022. A Modified SLEMSA Model to Estimate Soil Loss from Naurar Subcatchment of Ramganga River Basin.
11. Breetzke, G. D.; Koomen, E.; & W. R. S. Critchley, 2013. GIS-assisted modelling of soil erosion in a South African catchment: Evaluating the USLE and SLEMSA approach. Water resources planning, Development and Management, 53.
12. Dawit, K.; & F. Samuel, 2021. Comparison and Applicability of Selected Soil Erosion Estimation Models. Hydrology, 9(4), 79-87. [DOI:10.11648/j.hyd.20210904.12]
13. Elwell, H. A.; & M. A. Stocking, 1982. Developing a simple yet practical method of soil-loss estimation. Tropical agriculture.
14. Entezari Najafabadi M.; & M. Gholami, 2012. Evaluation of soil erosion by TOPSIS and SLEMSA method (Case study: Romeshgan, Iran). Environmental Erosion Research Journal, 2(3), 85-96. (In Persian).
15. Entezari, M.; Sharifi, R.; Eizadi, Z.; & S. Shahzeydi, 2013. Potential Erosion Assessment of Dastkan Region Using SLEMSA Model. Geography and Environmental Planning, 23(4), 109-120. (In Persian).
16. Entezari, M.; & H. Gholam Heydari, 2014. Comparing the two models SLEMSA and Corine in the assessment of soil erosion. The Journal of Spatial Planning, 18 (3):1-28. (In Persian).
17. Esmali Ouri, A.; & F. Kateb, 2020. Study of Soil Erosion Potential Using Landscape Measurements (Case Study: Sharif Beiglou Watershed, Ardabil Province). Hydrogeomorphology, 7(24), 145-164. (In Persian).
18. Gandoamkar, A.; Sheikhi, N.; & S. Ahmadi, 2008. Soil erosion in Musa Abad catchment area of Tirana using SLEMSA model. Human Settlements Planning Studies (Geographic Perspectives). Journal of Studies of Human Settlements Planning, 3(6), 95-108. (In Persian).
19. Ghorbaninejad, S.; Zeinivand, H.; Haghizadeh, A.; & N. Tahmasebi, 2018. Performance evaluation of Dempster-Shafer model for erosion potential mapping in Kakareza watershed, Lorestan province. Journal of RS and GIS for Natural Resources, 9(3), 100-114. (In Persian).
20. Hasanzadeh, N., Gholami, L.; Khaledi, Darvishan A.; & H. Yonesi, 2021. Effect of Various Rates of Montmorillonite Nanoclay on Changing Runoff and Soil Loss. Journal of Water and Soil Science, 25 (1) :219-230. (In Persian). [DOI:10.47176/jwss.25.1.38982]
21. Heydari, M.; Zahmatkesh Maromi, H.; & A. Karam, 2022. Soil erosion hazard Zonation using SLEMSA model in the Ziarat catchment. Researches in Earth Sciences, 12(4), 50-67. (In Persian).
22. Heydarnejad, S.; Ranjbar Fordoei, A.; Mousavi, S.; & R. Mirzaei, 2020. Estimation of soil erosion using SLEMSA model and OWA approach in Lorestan Province (Iran). Environmental Resources Research, 8(1), 11-24.
23. C. A. Igwe, 1994. The applicability of SLEMSA and USLE erosion models on soils of southeastern Nigeria. Unpub. Ph. D. Thesis, University of Nigeria, Nsukka, Nigeria.
24. Karami, F.; Mokhtari, D.; &F. Ahmadi, 2023. The role of landforms and lithology in the rate of soil erosion in Zonuzchay Catchment. Hydrogeomorphology. (In Persian).
25. karimi, S.; Rajabi, M.; & M. H. Rezaei Moghaddam, 2019. Qualitative Assessment and Risk Zoning of Soil Erosion with a Risk Index Approach in Alvand Karstic Basin, Kermanshah Province. Geography and Environmental Sustainability, 9(3), 1-18. (In Persian).
26. Kazeminia, A.; & B. Iran Nejadparizi, 2023. Locating soil erosion using the hierarchical analysis method in the geographic information system (GIS) environment. The 5th National Conference on Sustainable Development in Agricultural, Natural Resources and Environment of Iran papers, Natural Resources and Environment of Iran, Tehran. (In Persian).
27. Khaleghi, S.; nosrati, K.; & R. Abbaspour, 2020. Estimation of Soil Erosion and Sediment Transport by SWAT model (Case Study: Upstream of Badavar Basin, Lorestan). Quantitative Geomorphological Research, 9(3), 186-202. (In Persian).
28. Kiani, T.; Safakish, F.; & M. Lotfi, 2018. Potential Erosion Assessment of Mahidasht Basin using SLEMSA ‎Model. Geography and Environmental Planning, 29(2), 55-68. (In Persian).
29. E. Kori, 2023. Analysis of soil erodability and rainfall erosivity on the Soutpansberg Range, Limpopo Province, South Africa (Doctoral dissertation).
30. Ma, X.; Zhao, C.; & J. Zhu,2021. Aggravated risk of soil erosion with global warming-A global meta-analysis. Catena, 200, 105129. [DOI:10.1016/j.catena.2020.105129]
31. Madadi, A.; & E. Piroozi, 2016. Estimation of Soil erosion and sediement yield in Lay Chay basin. The Journal of Applied Research in Geographical Sciences, 16 (42):177-195. (In Persian).
32. Mallam, I.; Haruna, M. L.; Abdulhamed, A. I.; Usman, M. A.; & M. I. Azare, 2016. Soil Erosion Hazard Assessment Using SLEMSA Model in Out Sketch Parts of Kano Metropolis. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 2(2).
33. Memarian, H.; & M. Akbari, 2021. Prediction of combined effect of climate and land use changes on soil erosion in Iran using GloSEM data. Iranian journal of Ecohydrology, 8(2), 513-534. (In Persian).
34. Mezbani, M.; Rezaei Moghadam, M.; & A. Hejazi, 2021. Assessment of soil erosion risk in land uses using Revised Universal Soil Loss Equation (Case Study: Sikan Basin). Journal of Geography and Environmental Hazards, 10(1), 41-63. (In Persian).
35. M. S. Moesi, 2021. Integrating GIS and remote sensing in estimation of soil loss using the SLEMSA and RUSLE models: A case study of Taung Watershed, Ramotswa Agricultural District (Doctoral dissertation, Botswana University of Agriculture and Natural Resources).
36. Moesi, M. S.; Kayombo, B.; Tsheko, R.; & E. Setlhabi, 2023. Assessment of soil erosion by SLEMSA model using remote sensing and GIS: A case study of Taung Watershed of Ramotswa Agricultural District in Botswana. Global Journal of Engineering and Technology Advances, 15(1), 008-018. [DOI:10.30574/gjeta.2023.15.1.0056]
37. Mohammadi, S.; Karimzadeh, H.; & M. Alizadeh, 2018. Spatial estimation of soil erosion in Iran using RUSLE model, Iranian Journal of Eco Hydrology, 5(2), 551-569. (In Persian).
38. S. H. Mousavi, 2017. Estimation of soil erosion rate in Shahroud-Mayami watershed using SLEMSA model and GIS technique. Geographical Planning of Space, 7(24), 15-34. (In Persian).
39. Nabipay- Lashkarian, S.; Arabkhedri, M.; & S. Shadfar, 2021. An Assessment of the Empirical Erosion Potential Model in 63 Selected Watersheds in Iran. Watershed Management Research Journal, 34(4), 34-52. (In Persian).
40. Nainiva, S.P.; Parichereh, M.; & M. Mohammadrezaei, 2023, Investigation and Zoning of Soil Erosion Rate in Chehlgazi Sub-Watershed of Kurdistan Province, Journal of Geography and Environmental Studies, 12 (47), 202-216. (In Persian).
41. Panagos, P.; & A. Katsoyiannis, 2019. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environmental Research, 172, 470-474. [DOI:10.1016/j.envres.2019.02.043]
42. Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; & P. Borrelli, 2020. A soil erosion indicator for supporting agricultural, environmental and climate policies in the European :union:. Remote Sensing, 12(9), 1365. [DOI:10.3390/rs12091365]
43. M. Parvin, 2022. Identification of Prone Areas of Soil Erosion Using Modified Morphometric Prioritization and Sediment Production Rate (Case Study of Kamyaran Basin). The Journal of Applied Research in Geographical Sciences, 22 (64):478-461. (In Persian). [DOI:10.52547/jgs.22.64.478]
44. Pazhuhesh, M.; Kaviani, A.; Givi, J.; Davoudian, A. R.; & A. Honarbakhsh, 2017. Estimating of the amount of soil loss using universal soil loss equation In the Jonghan watershed. Journal of Water and Soil Conservation, 24(3), 299-306. (In Persian).
45. Rezaei arefi, M.; Zangane Asadi, M. A.; behniyafar, A.; & M. Javanbakht, 2020. Calculating the rate of erosion of karst using Empirical and laboratory techniques in Kalat watershed, northeast of Iran. Quantitative Geomorphological Research, 8(3), 64-79. (In Persian).
46. Roostaei, S.; shirzadi, H.; & S. A. Hejazi, 2023. Estimation of erosion rate and estimation of sedimentation by comparing experimental models (Study area of Zimkan river basin, Dalaho city, Kermanshah province). Quantitative Geomorphological Research. (In Persian).
47. Rostami, N., & Rabbani, M. 2023. Zoning of soil erodibility and determination of affecting factors (Case study: Golan watershed, Ilam). Integrated Watershed Management, 3(3), 1-15. (In Persian).
48. Sahour, H.; Gholami, V.; Vazifedan, M.; & S. Saeedi, 2021. Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research. [DOI:10.1016/j.still.2021.105032]
49. Salari, N.; Ranjbarmanesh, N.; & H. Nazaripour, 2012. Investigating the amount of erosion risk in the watershed, Search using SLEMSA model. The first conference, National Electronic Agriculture and Sustainable Natural Resources, Tehran, (In Persian).
50. Shahiri Tabarestani, E.; & H. Afzalimehr, 2024. Estimation of annual erosion and sedimentation in Babolroud catchment using EPM and Fournier methods. The Journal of Applied Research in Geographical Sciences, 23 (71), 303-318. (In Persian). [DOI:10.61186/jgs.23.71.303]
51. Shariat Jafari, M.; & J. Ghayoumian, 2005. classification of inherent susceptibility of rock and soil units to erosion (central Iran - Daranjir and Saghand deserts, 4th Iranian Conference of Engineering Geology and the Environment, Tehran. (In Persian).
52. Shirazi, M.; Khademalrasoul, A.; & S. M. Safieddin Ardebili, 2020. Evaluation of Different Supervised Learning Smart Methods and Response Surface Method to Optimize Factors Affecting Erosion (Case Study: Emamzadeh Watershed of Baghmalek). Iranian Journal of Soil and Water Research, 51(7), 1653-1666. (In Persian).
53. L. Sitayelo, 2022. A Geospatial assessment of soil erosion risk and soil fertility changes due to ISPAAD programme: A case study of Dinogeng Agricultural Extension Area, Kgatleng District (Doctoral dissertation, Botswana University of Agriculture & Natural Resources).
54. Sitayelo, L.; Kayombo, B.; Patrick, C.; & E. Kgosiesele, 2022. Integrating GIS and remote sensing in mapping soil erosion risk using SLEMSA model: A case study of Dinogeng Agricultural Extension Area of Kgatleng District, Botswana.
55. Soheili, E.; & Y. Niazi, 2022. Soil erosion changes based on RS&GIS techniques (Case study: Ilam Dam watershed), The 17th National Conference on Watershed Science and Engineering of Iran, focusing on watershed management and sustainable food security, Jiroft. (In Persian).
56. Stocking, M.; Chakela, Q.; & H. Elwell, 1988. An improved methodology for erosion hazard mapping Part I: The technique. Geografiska Annaler: Series A, Physical Geography, 70(3), 169-180. [DOI:10.1080/04353676.1988.11880245]
57. Taghavi, S.; & M. Hashemi, 2013. Estimation of sedimentation and erosion with SLEMSA model using GIS method in Hoyer watershed, the first national conference on sustainable agriculture and natural resources, The first national conference on agriculture and sustainable natural resources, Tehran. (In Persian)

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb