سال 14، شماره 4 - ( زمستان 1403 )                   جلد 14 شماره 4 صفحات 61-39 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amani K, Hosseini S M, Yamani M, Maghsoudi M. Quantification of Geomorphological Changes of Sefidroud River and Investigation of Their Relationship with Hydraulic Characteristics of Flood Events. E.E.R. 2024; 14 (4) :39-61
URL: http://magazine.hormozgan.ac.ir/article-1-858-fa.html
امانی خبات، حسینی سیدموسی، یمانی مجتبی، مقصودی مهران. کمی سازی تغییرات ژئومورفولوژیک رودخانه سفیدرود و بررسی ارتباط آن با ویژگی‌های هیدرولیکی سیلاب. پژوهش هاي فرسايش محيطي. 1403; 14 (4) :39-61

URL: http://magazine.hormozgan.ac.ir/article-1-858-fa.html


گروه جغرافیای طبیعی، دانشکده جغرافیا، دانشگاه تهران، تهران ، smhosseini@ut.ac.ir
چکیده:   (1202 مشاهده)
رودخانه­ها سیستم­های دینامیک ژئومورفولوژیک هستند که دائماً در حال تغییر و تحول می­باشند. این تغییر و تحولات بسته به شرایط توپوگرافیک، ژئومورفولوژیک، هیدرولوژیک و هیدرولیک متفاوت است. پژوهش حاضر با هدف کمی سازی تغییرات ژئومورفولوژیک رودخانه در سه بازه تقریباً 25 کیلومتری در طول رودخانه سفیدرود در استان­های کردستان - بازه یساول؛ زنجان - بازه گیلوان و مازندران - بازه آستانه بررسی و ارتباط آن­ها با شدت سیلاب انجام شده است. شدت سیلاب از ترکیب عمق و سرعت سیلاب با دوره بازگشت 25 ساله با مدلسازی هیدرولیکی به وسیله نرم­افزار HEC RAS در بازه­های مورد مطالعه بدست آمد. چهار شاخص شریانی کانال (B)، سینوسیته کانال (P)، نرخ جابجایی جانبی(RM) و پایداری کانال رودخانه(S) در بازه­های مورد مطالعه بدست آمدند.  نتایج حاصل مؤید آن است که شاخص شریانی بازه یساول به دلیل دخالت­های کم­تر انسان و وجود پشته­های رسوبی و جریانات چند شاخه بیشتر از دو بازه دیگر است. شاخص سینوسیته بازه آستانه به دلیل مورفولوژی جلگه­ای کناره­ها بالاتر بود و میزان جابجایی جانبی این بازه نیز تحت تأثیر همان عامل بیشتر بود. دوبازه گیلوان و یساول به دلیل محدود بودن کناره­ها پایداری بیش­تر و سینوسیته و جابجایی جانبی کم­تری داشتند. نتایج بررسی ارتباط شاخص­های ژئوموفولوژیک رودخانه­ با شدت سیلاب با دوره بازگشت­های میان مدت نشان داد که برخلاف انتظار، در نواحی با شدت سیلاب بیشتر تغییرات کانال رودخانه کمتر است. که دلایل عمده آن را می­توان با تأثیرگذاری هندسه مقطع کانال و شیب طولی کانال رودخانه مرتبط دانست. چرا که از نظر مورفولوژیک در نواحی عمیق کانال رودخانه، امکان جابجایی کم­تر است لذا رودخانه پایدارتر می­باشد. همچنین در شیب­های تند جریان رودخانه اعم از پایه و سیلابی سرعت و در نتیجه شدت بیشتری دارد و کانال را بیشتر حفر می­کند. کانال عمیق تر قاعدتاً توانایی عبور سیلاب­های با دوره بازگشت کم­تر را دارد و امکان سرریز شدن آب به اراضی مجاور و ایجاد مسیرهای جدید کاهش ­می­یابد.
 
متن کامل [PDF 1883 kb]   (99 دریافت)    

فهرست منابع
1. Aguiar, F. C., Martins, M. J., Silva, P. C., & Fernandes, M. R. (2016). Riverscapes downstream of hydropower dams: Effects of altered flows and historical land-use change. Landscape and Urban Planning, 153, 83-98. [DOI:10.1016/j.landurbplan.2016.04.009]
2. Baker, V. R., & Costa, J. E. (2020). Flood power. In Catastrophic flooding (pp. 1-21). Routledge. [DOI:10.4324/9781003020325-1]
3. Brierley, G. J., & Fryirs, K. A. (2013). Geomorphology and river management: applications of the river styles framework. John Wiley & Sons.
4. Deodhar, L. A., & Kale, V. S. (1999). Downstream adjustments in allochthonous rivers: Western Deccan Trap upland region, India. Varieties of fluvial form, 295-315.
5. Dufour, S., Rinaldi, M., Piégay, H., & Michalon, A. (2015). How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central-Northern Italy. Landscape and Urban Planning, 134, 107-118. [DOI:10.1016/j.landurbplan.2014.10.007]
6. Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R., & Ferreira, M. T. (2020). Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena, 188, 104466. [DOI:10.1016/j.catena.2020.104466]
7. Forget, M. (2013). The role of historical sources in the understanding of the fluvial dynamics of a great plain river. The case of the Argentinian Parana. Geomorphologie-Relief Processus Environnement, (4), 445-462. [DOI:10.4000/geomorphologie.10399]
8. Friend, P. F., & Sinha, R. (1993). Braiding and meandering parameters. Geological Society, London, Special Publications, 75(1), 105-111. [DOI:10.1144/GSL.SP.1993.075.01.05]
9. Gharbi, M., Soualmia, A., Dartus, D., & Masbernat, L. (2016). Comparison of 1D and 2D hydraulic models for floods simulation on the Medjerda Riverin Tunisia. J. Mater. Environ. Sci, 7(8), 3017-3026.
10. Giardino, J. R., & Lee, A. A. (2011). Rates of channel migration on the Brazos River. Yangling: Department of Geology & Geophysics, Texas A & M University.
11. Gurnell, A. M., & Petts, G. E. (2002). Island-dominated landscapes of large floodplain rivers, a European perspective. Freshwater Biology, 47(4), 581-600. [DOI:10.1046/j.1365-2427.2002.00923.x]
12. Gupta, A., Kale, V. S., & Rajaguru, S. N. (1999). The Narmada River, India, through space and time. Varieties of fluvial form, 114-143.
13. Halwas, K. L., & Church, M. (2002). Channel units in small, high gradient streams on Vancouver Island, British Columbia. Geomorphology, 43(3-4), 243-256. [DOI:10.1016/S0169-555X(01)00136-2]
14. Hassan, M. A., Smith, B. J., Hogan, D. L., Luzi, D. S., Zimmermann, A. E., & Eaton, B. C. (2007). 18 Sediment storage and transport in coarse bed streams: scale considerations. Developments in Earth Surface Processes, 11, 473-496. [DOI:10.1016/S0928-2025(07)11137-8]
15. Hooke, J. M., & Redmond, C. E. (1989). Use of cartographic sources for analysing river channel change with examples from Britain. In Historical change of large alluvial rivers, Western Europe (pp. 79-93).
16. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19434166
17. Islam, A., Sarkar, B., Saha, U. D., Islam, M., & Ghosh, S. (2021). Can an annual flood induce changes in channel geomorphology? Natural Hazards, 1-28. [DOI:10.1007/s11069-021-05089-7]
18. Jackson, R. G. (1975). Hierarchical attributes and a unifying model of bed forms composed of cohesionless material and produced by shearing flow. Geological Society of America Bulletin, 86(11), 1523-1533. GSA Bulletin (1975) 86 (11): 1523-1533. https://doi.org/10.1130/0016-7606(1975)86<1523:HAAAUM>2.0.CO;2 https://doi.org/10.1130/0016-7606(1975)86<1523:HAAAUM>2.0.CO;2 [DOI:10.1130/0016-7606(1975)862.0.CO;2]
19. Kale, V. S. (1990). Morphological and hydrological characteristics of some allochthonous river channels, western Deccan Trap upland region, India. Geomorphology, 3(1), 31-43. [DOI:10.1016/0169-555X(90)90030-T]
20. Knighton, D. (2014). Fluvial forms and processes: a new perspective. Routledge. [DOI:10.4324/9780203784662]
21. Kochel, R. C. (1988). Geomorphic impact of large floods: review and new perspectives on magnitude and frequency. Flood Geomorphology. John Wiley & Sons New York. 1988. p 169-187. 9 fig, 2 tab, 43 ref. NSF Grant EAR 77-23025.
22. Kong, D., Latrubesse, E. M., Miao, C., & Zhou, R. (2020). Morphological response of the Lower Yellow River to the operation of Xiaolangdi Dam, China. Geomorphology, 350, 106931. [DOI:10.1016/j.geomorph.2019.106931]
23. Kyuka, T., Okabe, K., Shimizu, Y., Yamaguchi, S., Hasegawa, K., & Shinjo, K. (2020). Dominating factors influencing rapid meander shift and levee breaches caused by a record-breaking flood in the Otofuke River, Japan. Journal of Hydro-environment Research, 31, 76-89. [DOI:10.1016/j.jher.2020.05.003]
24. Labbe, J. M., Hadley, K. S., Schipper, A. M., Leuven, R. S., & Gardiner, C. P. (2011). Influence of bank materials, bed sediment, and riparian vegetation on channel form along a gravel-to-sand transition reach of the Upper Tualatin River, Oregon, USA. Geomorphology, 125(3), 374-382. [DOI:10.1016/j.geomorph.2010.10.013]
25. Lallias-Tacon, S., Liébault, F., & Piégay, H. (2017). Use of airborne LiDAR and historical aerial photos for characterising the history of braided river floodplain morphology and vegetation responses. Catena, 149, 742-759. [DOI:10.1016/j.catena.2016.07.038]
26. Magdaleno, F., & Fernández-Yuste, J. A. (2011). Meander dynamics in a changing river corridor. Geomorphology, 130(3-4), 197-207. [DOI:10.1016/j.geomorph.2011.03.016]
27. Magliulo, P., Bozzi, F., & Pignone, M. (2016). Assessing the planform changes of the Tammaro River (southern Italy) from 1870 to 1955 using a GIS-aided historical map analysis. Environmental Earth Sciences, 75, 1-19. [DOI:10.1007/s12665-016-5266-5]
28. Mendoza, A., Soto-Cortes, G., Priego-Hernandez, G., & Rivera-Trejo, F. (2019). Historical description of the morphology and hydraulic behavior of a bifurcation in the lowlands of the Grijalva River Basin, Mexico. Catena, 176, 343-351. [DOI:10.1016/j.catena.2019.01.033]
29. Newson, M. D., & Large, A. R. (2006). 'Natural 'rivers, 'hydro morphological quality 'and river restoration: a challenging new agenda for applied fluvial geomorphology. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(13), 1606-1624. https://doi.org/10.1002/esp.1430 [DOI:10.1002/esp.1430.]
30. Richards, K. (1999). The magnitude-frequency concept in fluvial geomorphology: a component of a degenerating research programme?. Zeitschrift für Geomorphologie. Supplementband, (115), 1-18. [DOI:10.1127/zfgsuppl/115/1999/1]
31. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6201564
32. Rajaguru, S. N., Gupta, A., Kale, V. S., Mishra, S., Ganjoo, R. K., Ely, L. L., ... & Baker, V. R. (1995). Channel form and processes of the flood‐dominated Narmada River, India. Earth Surface Processes and Landforms, 20(5), 407-421. [DOI:10.1002/esp.3290200503]
33. Rinaldi, M. (2003). Recent channel adjustments in alluvial rivers of Tuscany, Central Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28(6), 587-608. https://doi.org/10.1002/esp.464 [DOI:10.1002/esp.464.]
34. Samela, C., Troy, T. J., & Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Advances in water resources, 102, 13-28. [DOI:10.1016/j.advwatres.2017.01.007]
35. Sarma, J. N., & Basumallick, S. (1984). Bankline migration of the Burhi Dihing river, Assam. Indian Journal of Earth Science, 11, 199-206.
36. Sinha, R. (1996). Channel avulsion and floodplain structure in the Gandak-Kosi interfan, north Bihar plains, India. Zeitschrift für Geomorphologie. Supplementband, (103), 249-268. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6319521
37. Schumm, S. A. (1977). The Fluvial System.
38. Taillefumier, F., & Piégay, H. (2003). Contemporary land use changes in prealpine Mediterranean mountains: a multivariate GIS-based approach applied to two municipalities in the Southern French Prealps. Catena, 51(3-4), 267-296. [DOI:10.1016/S0341-8162(02)00168-6]
39. Tealdi, S., Camporeale, C., & Ridolfi, L. (2011). Long-term morphological river response to hydrological changes. Advances in water resources, 34(12), 1643-1655. [DOI:10.1016/j.advwatres.2011.08.011]
41. Uribelarrea, D., Pérez-González, A., & Benito, G. (2003). Channel changes in the Jarama and Tagus rivers (central Spain) over the past 500 years. Quaternary Science Reviews, 22(20), 2209-2221. [DOI:10.1016/S0277-3791(03)00153-7]
42. WOOD‐SMITH, R. D., & Buffington, J. M. (1996). Multivariate geomorphic analysis of forest streams: implications for assessment of land use impacts on channel condition. Earth Surface Processes and Landforms, 21(4), 377-393. https://doi.org/10.1002/(SICI)1096-9837(199604)21:4<377::AID-ESP546>3.0.CO;2-2 [DOI:10.1002/(SICI)1096-9837(199604)21:43.0.CO;2-2]
43. https://doi.org/10.1002/(SICI)1096-9837(199604)21:4<377::AID-ESP546>3.0.CO;2-2 https://doi.org/10.1002/(SICI)1096-9837(199604)21:4<377::AID-ESP546>3.0.CO;2-2 [DOI:10.1002/(SICI)1096-9837(199604)21:43.0.CO;2-2]
44. Ziliani, L., & Surian, N. (2016). Reconstructing temporal changes and prediction of channel evolution in a large Alpine river: The Tagliamento River, Italy. Aquatic sciences, 78, 83-94. https://doi.org/10.1007/s00027-015-0431-6 [DOI:10.1007/s00027-015-0431-6.]
45. Zlinszky, A., & Timár, G. (2013). Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary. Hydrology and Earth System Sciences, 17(11), 4589-4606. [DOI:10.5194/hess-17-4589-2013]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb