سال 14، شماره 4 - ( زمستان 1403 )                   جلد 14 شماره 4 صفحات 79-62 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roshannekoo P, Nosrati K, Dehbandi R. Validation of land-use contributions to sediment yield using virtual sediment samples in the Alvand Basin, Kermanshah Province. E.E.R. 2025; 14 (4) :62-79
URL: http://magazine.hormozgan.ac.ir/article-1-866-fa.html
روشن نکو پروین، نصرتی کاظم، دهبندی رضا. اعتبار سنجی سهم انواع کاربری اراضی در تولید رسوب با استفاده از نمونه‌های رسوب مجازی در حوضه آبخیز الوند، استان کرمانشاه. پژوهش هاي فرسايش محيطي. 1403; 14 (4) :62-79

URL: http://magazine.hormozgan.ac.ir/article-1-866-fa.html


گروه جغرافیای طبیعی، دانشکده دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران. ، k_nosrati@sbu.ac.ir
چکیده:   (1716 مشاهده)
از بین رفتن خاک سطحی حاصلخیز یکی از مشکلات اصلی تخریب خاک در اکوسیستم‌های کشاورزی در سراسر جهان است. شناسایی سهم منابع رسوب برای درک موثر فرآیندهای فرسایش خاک، اتخاذ اقدامات مدیریتی مناسب و بهینه‌سازی استراتژی‌های حفاظت از خاک مهم است. در حال حاضر، تکنیک منشأیابی رسوب به‌طور گسترده‌ای در سطح جهان برای ارزیابی سهم منابع رسوب مورد توجه قرار گرفته است. هدف از این پژوهش تعیین سهم انواع کاربری اراضی در تولید رسوب حوضه آبخیز الوند در استان کرمانشاه و اعتبارسنجی آن با استفاده از نمونه های رسوب مجازی بود. ابتدا 28 نمونه از کاربری‌های مختلف؛ کشت آبی (10 نمونه) کشت دیم (8 نمونه) و مراتع (10 نمونه) و 10 نمونه از خروجی حوضه اصلی به عنوان رسوب هدف نمونه‌برداری شد. به این منظور 9 عنصر ژئوشیمیایی با اندازه ذرات کوچکتر از 125 میکرون انداره‌گیری شدند و 42 شاخص هوازدگی بر اساس عناصر ژئوشیمیایی در نمونه‌های رسوب منبع و نمونه‌های رسوب هدف محاسبه شدند. با استفاده از تحلیل آماری کروسکال-والیس و تحلیل آماری تابع تشخیص، عنصر ژئوشیمیایی (Na)  و شاخص هوازدگی (FENG) به عنوان ترکیب نهایی از ردیاب‌ها قادر به تفکیک منابع رسوب در منطقه مورد مطالعه، برگزیده شد. روش منشأیابی رسوب براساس  مدل بیسین تهیه و درصد سهم هر یک از منابع رسوب مشخص شد. برای سه منبع رسوب یعنی زمین‌های زیر کشت دیم، کشت آبی و مراتع سهم نسبی تولید رسوب هریک به ترتیب 7/53  ، 9/43  و 8/1 درصد برآورد شد. اعتبار سنجی نتایج با استفاده از نمونه‌های رسوب مجازی بررسی شد که مقدار میانگین خطای RMSE، MAE و dبه ترتیب 6/19 ، 5/17 و 711/0 درصد بود. نتایج این پژوهش می‌تواند در انتخاب روش مدیریت درست و هدفمند از طریق شناخت و کنترل فرسایش و کاربری اراضی این منابع متمرکز گردد تا اثرات آن بر روی رسوبات ریزدانه به حداقل برسد.
 
متن کامل [PDF 980 kb]   (170 دریافت)    

فهرست منابع
1. Ahmadi, H., 1999. Applied Geomorphology: Water Erosion, vol. 1. University of Tehran Publishing Institute, Iran (in Persian).
2. Alewell, C., Birkholz, A., Meusburger, K., Schindler Wildhaber, Y., Mabit, L., 2016. Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences 13, 1587-1596. https://doi.org/10.5194/bg-13-1587-2016 [DOI:10.5194/bg-13-1587-2016.]
3. Arabkhedri,M., Valikhojeini, A., Hakimkhani, S., Charkhabi, A., Telvari, A., 2005. Estimation and Mapping of Sediment Yield for Iran. Research Institute of Soil Conservation and Watershed Management, Tehran (in Persian).
4. Bahlburg, H., & Dobrzinski, N. (2011). Chapter 6 A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geological Society, London, Memoirs, 36(1), 8- 92. [DOI:10.1144/M36.6]
5. Beaulieu, E., Goddéris, Y., Labat, D., Roelandt, C., Oliva, P., & Guerrero, B. (2010). Impact of atmospheric CO2 levels on continental silicate weathering. Geochemistry, Geophysics, Geosystems, 11(7). https://doi.org/10.1029/2010GC003078 [DOI:10.1029/2010GC003078.]
6. Calitri, F., Sommer, M., Norton, K., Temme, A., Brandová, D., Portes, R., ... & Egli, M. (2019). Tracing the temporal evolution of soil redistribution rates in an agricultural landscape using 239+ 240Pu and 10Be. Earth Surface Processes and Landforms, 44(9), 1783-1798. [DOI:10.1002/esp.4612]
7. Chen, F., Zhang, F., Fang, N., & Shi, Z. (2016). Sediment source analysis using the fingerprinting method in a small catchment of the Loess Plateau, China. Journal of soils and sediments, 16, 1655-1669. [DOI:10.1007/s11368-015-1336-7]
8. Chen, F. X., Fang, N. F., Wang, Y. X., Tong, L. S., & Shi, Z. H. (2017). Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales. Geomorphology, 278, 1-11. [DOI:10.1016/j.geomorph.2016.10.027]
9. Chen, Q., Li, Z., Dong, S., Yu, Q., Zhang, C., & Yu, X. (2021). Applicability of chemical weathering indices of eolian sands from the deserts in northern China. Catena, 198, 105032. [DOI:10.1016/j.catena.2020.105032]
10. Cho, T., & Ohta, T. (2022). A robust chemical weathering index for sediments containing authigenic and biogenic materials. Palaeogeography, Palaeoclimatology, Palaeoecology, 608, 111288. https://doi.org/10.1016/j.palaeo.2022.111288 [DOI:10.1016/j.palaeo.2022.111288.]
11. Collins, A., Walling, D., & Leeks, G. J. L. (1996). Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn River basins, United Kingdom. Géomorphologie: relief, processus, environnement, 2(2), 41-53. [DOI:10.3406/morfo.1996.877]
12. Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1997). Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena, 29(1), 1-27. https://doi.org/10.1016/S0341-8162(96)00064-1 [DOI:10.1016/S0341-8162(96)00064-1.]
13. Collins, A. L., Pulley, S., Foster, I. D., Gellis, A., Porto, P., & Horowitz, A. J. (2017). Sediment source fingerprinting as an aid to catchment management: a review of the current state of knowledge and a methodological decision-tree for end-users. Journal of environmental management, 194, 86-108. https://doi.org/10.1016/j.jenvman.2016.09.075 [DOI:10.1016/j.jenvman.2016.09.075.]
14. Collins, A. L., Blackwell, M., Boeckx, P., Chivers, C. A., Emelko, M., Evrard, O., ... & Zhang, Y. (2020). Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 20, 4160-4193., https://doi.org/10.1007/s11368-020-02755-4 [DOI:10.1007/s11368-020-02755-4.]
15. Derakhshan-Babaei, F., Nosrati, K., Tikhomirov, D., Christl, M., Sadough, H., & Egli, M. (2020). Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology, 363, 107235. [DOI:10.1016/j.geomorph.2020.107235]
16. Derakhshan-Babaei, F., Nosrati, K., Fiener, P., Egli, M., & Collins, A. L. (2024). Source fingerprinting sediment loss from sub-catchments and topographic zones using geochemical tracers and weathering indices. Journal of Hydrology, 633, 131019, https://doi.org/10.1016/j.jhydrol.2024.131019 [DOI:10.1016/j.jhydrol.2024.131019.]
17. Dzombak, R. M., & Sheldon, N. D. (2022). Terrestrial records of weathering indicate three billion years of dynamic equilibrium. Gondwana Research, 109, 376-393. https://doi.org/10.1016/j.gr.2022.05.009 [DOI:10.1016/j.gr.2022.05.009.]
18. Egli, M., & Poulenard, J. (2016). Soils of mountainous landscapes. International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology, 1-10. [DOI:10.1002/9781118786352.wbieg0197]
19. Gaspar, L., Blake, W.H., Smith, H.G., Lizaga, I., Navas, A., 2019b. Testing the sensitivity of a multivariate mixing model using geochemical fingerprints with artificial mixtures. Geoderma 337, 498-510. https://doi.org/10.1016/j.geoderma.2018.10.005 [DOI:10.1016/j.geoderma.2018.10.005.]
20. Glendell, M., Jones, R., Dungait, J. A. J., Meusburger, K., Schwendel, A. C., Barclay, R., ... & Meersmans, J. (2018). Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England). Science of the total environment, 616, 1077-1088. https://doi.org/10.1016/j.scitotenv.2017.10.211 [DOI:10.1016/j.scitotenv.2017.10.211.]
21. Goddéris, Y., Donnadieu, Y., Tombozafy, M., & Dessert, C. (2008). Shield effect on continental weathering: implication for climatic evolution of the Earth at the geological timescale. Geoderma, 145(3-4), 439-448 https://doi.org/10.1016/j.geoderma.2008.01.020 [DOI:10.1016/j.geoderma.2008.01.020.]
22. Hammond, R., & McCullagh, P. S. (1978). Quantitative techniques in geography: an introduction. OUP Catalogue.
23. Hancock, G. J., & Revill, A. T. (2013). Erosion source discrimination in a rural Australian catchment using compound‐specific isotope analysis (CSIA). Hydrological Processes, 27(6), 923-932. [DOI:10.1002/hyp.9466]
24. Hayes, N. R., Buss, H. L., Moore, O. W., Krám, P., & Pancost, R. D. (2020). Controls on granitic weathering fronts in contrasting climates. Chemical Geology, 535, 119450. [DOI:10.1016/j.chemgeo.2019.119450]
25. Jalalian, A., Ghahareh, M., Karimzadeh, H., 1994. Erosion and sediment in some drainage basin of Iran. 4th Iranian Soil sciences Congress, Isfahan. 9-15 (in Persian).
26. Koiter, A. J., Owens, P. N., Petticrew, E. L., & Lobb, D. A. (2013). The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Science Reviews, 125, 24-42. [DOI:10.1016/j.earscirev.2013.05.009]
27. Lizaga, I., Gaspar, L., Blake, W. H., Latorre, B., & Navas, A. (2019). Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology, 341, 216-229. [DOI:10.1016/j.geomorph.2019.05.015]
28. Li, Y., Jiang, Z., Yu, Y., Shan, Z., Lan, F., Yue, X., ... & Rodrigo-Comino, J. (2020). Evaluation of soil erosion and sediment deposition rates by the 137 Cs fingerprinting technique at different hillslope positions on a catchment. Environmental Monitoring and Assessment, 192, 1-13, https://doi.org/10.1007/s10661-020-08680-w [DOI:10.1007/s10661-020-08680-w.]
29. Liu, C., Wu, Z., Hu, B. X., & Li, Z. (2021). Linking recent changes in sediment yields and aggregate-associated organic matter sources from a typical catchment of the Loess Plateau, China. Agriculture, Ecosystems & Environment, 321, 107606. https://doi.org/10.1016/j.agee.2021.107606 [DOI:10.1016/j. agee.2021.107606.]
30. Marshall, H. G., Walker, J. C., & Kuhn, W. R. (1988). Long‐term climate change and the geochemical cycle of carbon. Journal of Geophysical Research: Atmospheres, 93(D1), 791-801. [DOI:10.1029/JD093iD01p00791]
31. Raigani, Z. M., Nosrati, K., & Collins, A. L. (2019). Fingerprinting sub-basin spatial sediment sources in a large Iranian catchment under dry-land cultivation and rangeland farming: combining geochemical tracers and weathering indices. Journal of Hydrology: Regional Studies, 24, 100613., https://doi.org/10.1016/j.ejrh.2019.100613 [DOI:10.1016/j.ejrh.2019.100613.]
32. Moore, J. W., & Semmens, B. X. (2008). Incorporating uncertainty and prior information into stable isotope mixing models. Ecology letters, 11(5), 470-480. [DOI:10.1111/j.1461-0248.2008.01163.x]
33. Nadłonek, W., & Bojakowska, I. (2018). Variability of chemical weathering indices in modern sediments of the Vistula and Odra Rivers (Poland). Applied Ecology & Environmental Research, 16(3).‏ http://dx.doi.org/10.15666/aeer/1603_24532473 [DOI:10.15666/aeer/1603_24532473]
34. Négrel, P., Sadeghi, M., Ladenberger, A., Reimann, C., Birke, M., & GEMAS Project Team. (2015). Geochemical fingerprinting and source discrimination of agricultural soils at continental scale. Chemical geology, 396, 1-15. [DOI:10.1016/j.chemgeo.2014.12.004]
35. Nosrati, K., Govers, G., Semmens, B. X., & Ward, E. J. (2014). A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma, 217, 173-180. https://doi.org/10.1016/j.geoderma.2013.12.002 [DOI:10.1016/j.geoderma.2013.12.002.]
36. Nosrati, K., Collins, A. L., & Madankan, M. (2018). Fingerprinting sub-basin spatial sediment sources using different multivariate statistical techniques and the Modified MixSIR model. CATENA, 164, 32-43, https://doi.org/10.1016/j.catena.2018.01.003 [DOI:10.1016/j.catena.2018.01.003.]
37. Owens, P. N., Blake, W. H., Gaspar, L., Gateuille, D., Koiter, A. J., Lobb, D. A., ... & Woodward, J. C. (2016). Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Science Reviews, 162, 1-23. [DOI:10.1016/j.earscirev.2016.08.012]
38. Palazón, L., Latorre, B., Gaspar, L., Blake, W. H., Smith, H. G., & Navas, A. (2015). Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures. Science of the Total Environment, 532, 456-466. [DOI:10.1016/j.scitotenv.2015.05.003]
39. Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PloS one, 5(3), e9672. [DOI:10.1371/journal.pone.0009672]
40. Parnell, A., & Jackson, A. (2011). SIAR: stable isotope analysis in R. R package v. 4.1. 3. See https://cran. r-project. org/web/packages/siar/index. html.
41. http://cran.rproject.org/web/packages/siar/index.html.
42. Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical geology, 202(3-4), 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001 [DOI:10.1016/j.chemgeo.2002.11.001.]
43. Pulley, S., & Collins, A. L. (2018). Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software. Science of the Total Environment, 635, 838-858. [DOI:10.1016/j.scitotenv.2018.04.126]
44. Shao, J., Yang, S., & Li, C. (2012). Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sedimentary Geology, 265, 110-120. [DOI:10.1016/j.sedgeo.2012.03.020]
45. Walling, D. E., & Woodward, J. C. (1995). Tracing sources of suspended sediment in river basins: a case study of the River Culm, Devon, UK. Marine and Freshwater Research, 46(1), 327-336. [DOI:10.1071/MF9950327]
46. Walling, D. E., Collins, A. L., Jones, P. A., Leeks, G. J. L., & Old, G. (2006). Establishing fine-grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK. Journal of hydrology, 330(1-2), 126-141. [DOI:10.1016/j.jhydrol.2006.04.015]
47. Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate phosphorus sources in catchments. Journal of Hydrology, 350(3-4), 274-289. [DOI:10.1016/j.jhydrol.2007.10.047]
48. Winnick, M. J., & Maher, K. (2018). Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback. Earth and Planetary Science Letters, 485, 111-120. https://doi.org/10.1016/j.epsl.2018.01.005 [DOI:10.1016/j.epsl.2018.01.005.]
49. Wilkinson, S. N., Hancock, G. J., Bartley, R., Hawdon, A. A., & Keen, R. J. (2013). Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agriculture, Ecosystems & Environment, 180, 90-102. [DOI:10.1016/j.agee.2012.02.002]
50. Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39(3), 233-266. [DOI:10.1180/0009855043930133]
51. Yu, L. I. Z. H. O. N. G., & Oldfield, F. (1989). A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Research, 32(2), 168-181.. [DOI:10.1016/0033-5894(89)90073-2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb