1. Abbas, T., Nabi, G., Boota, M. W., Hussain, F., Faisal, M. & Ahsan, H. (2015). Impacts of landuse changes on runoff generation in Simly watershed. Sci Int, 27(4), 4083-4089.
2. Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. & Klove, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733e752, [
DOI:10.1016/j.jhydrol.2015.03.027]
3. Aboelnour, M. A., Tank, J. L., Hamlet, A. F., Bertassello, L. E., Ren, D. & Bolster, D. (2025). A SWAT model depicts the impact of land use change on hydrology, nutrient, and sediment loads in a Lake Michigan watershed. Modeling Earth Systems and Environment, 11(1), 22 [
DOI:10.1007/s40808-024-02259-x]
4. Abroshan, M., & Zomorodian, M. (2014). Hydrological Simulation of Firoozabad Basin By SWAT. Irrigation and Water Engineering, 4(2), 38-48. (In persion)
5. Aghsaei, H., Dinan, N. M., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N. & Wagner, P. N. (2020). Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. The Science of the Total Environment, 712, 136449,
https://doi.org/10.1016/j.scitotenv.2019.136449 [
DOI:10.1016/ j. scitotenv.2019.136449]
6. Ansarifard, M., Ghorbanifard, F. & Abdolazimi, H. (2024). Hydrological Simulation and Drought Analysis in an Ungauged Watershed (Parishan Lake, Iran) using SWAT Model, Journal of Water and Climate Change, [
DOI:10.2166/wcc.2024.268]
7. Arnold, J. G. & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes: An International Journal, 19(3), 563-572. [
DOI:10.1002/hyp.5611]
8. Asghari Sersekanroud, S. & Saeedi Seta, A. (2023). Investigating the Effects of Land Use Changes on the Runoff of Qara Chai River Basin Using the SWAT Model. Geography and Environmental Planning, 34(3), 95-118. doi: 10.22108/gep.2023.134432.1535. (In persion)
9. Asres, M. T. & Awulachew, S. B. (2010). SWAT based runoff and sediment yield modelling: a case study of the Gumera watershed in the Blue Nile basin. Ecohydrology & Hydrobiology, 10(2-4), 191-199. [
DOI:10.2478/v10104-011-0020-9]
10. Bal, M., Dandpat, A. K. & Naik, B. (2021). Hydrological modeling with respect to impact of land-use and land-cover change on the runoff dynamics in Budhabalanga river basing using ArcGIS and SWAT model. Remote Sensing Applications: Society and Environment, 23, 100527. [
DOI:10.1016/j.rsase.2021.100527]
11. Besha, K. Z., Demissie, T. A. & Feyessa, F. F. (2024). Effects of land use/land cover change on hydrological responses of a watershed in the Central Rift Valley of Ethiopia. Hydrology Research, 55(2), 83-111 [
DOI:10.2166/nh.2024.042]
12. Bressiani DA, Srinivasan R, Jones CA, & Mediondo, E. M. (2015). Effects of spatial and temporal weather data resolutions on streamflow modeling of a semi-arid basin, Northeast Brazil. International Journal of Agricultural & Biological Engineering, 8(3), 125-139. DOI: http://dx.doi. org/10.3965/j.ijabe. 20150803.970
13. Chilagane, N. A., Kashaigili, J. J., Mutayoba, E., Lyimo, P., Munishi, P., Tam, C. & Burgess, N. (2021). Impact of land use and land cover changes on surface runoff and sediment yield in the Little Ruaha River Catchment. Open Journal of Modern Hydrology, 11(3), 54-74. [
DOI:10.4236/ojmh.2021.113004]
14. Da Silva, V. D. P. R., Silva, M. T., Singh, V. P., de Souza, E. P., Braga, C. C., de Holanda, R. M., ... & Braga, A. C. R. (2018). Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. Catena, 162, 166-176. [
DOI:10.1016/j.catena.2017.11.024]
15. De Oliveira Serrão, E. A., Silva, M. T., Ferreira, T. R., da Silva, V. D. P. R., de Sousa, F. D. S., de Lima, A. M. M., ... & Wanzeler, R. T. S. (2020). Land use change scenarios and their effects on hydropower energy in the Amazon. Science of The Total Environment, 744, 140981. [
DOI:10.1016/j.scitotenv.2020.140981]
16. De Oliveira Serrão, E. A., Silva, M. T., Ferreira, T. R., de Ataide, L. C. P., dos Santos, C. A., de Lima, A. M. M., ... & Gomes, D. J. C. (2022). Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research, 37(1), 54-69. [
DOI:10.1016/j.ijsrc.2021.04.002]
17. Dwarakish, G. S. & Ganasri, B. P. (2015). Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1), 1115691. [
DOI:10.1080/23312041.2015.1115691]
18. Fiseha, B. M., Setegn, S. G., Melesse, A. M., Volpi, E. & Fiori, A. (2013). Hydrological analysis of the Upper Tiber River Basin, Central Italy: a watershed modelling approach. Hydrological processes, 27(16), 2339-2351. [
DOI:10.1002/hyp.9234]
19. Fohrer, N., Haverkamp, S., Eckhardt, K. & Frede, H. G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 577-582. [
DOI:10.1016/S1464-1909(01)00052-1]
20. Fontes, R. & Montenegro, A. (2019). Impact of land use change on the water balance in a representative watershed in the semiarid of the state of Pernambuco using the SWAT model. Engenharia Agrícola, 39, 110-117. [
DOI:10.1590/1809-4430-eng.agric.v39n1p110-117/2019]
21. Ghazavi, R. & Fazeli, A. (2019). Investigation the effects of land use change on surface runoff using Remote sensing and SWAT model. Journal of Water and Soil Conservation, 25(6), 191-206. doi: 10.22069/jwsc.2019.12697.2739. (In persion)
22. Goldblatt, R., You, W., Hanson, G. & Khandelwal, A. K. (2016). Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8), 634. [
DOI:10.3390/rs8080634]
23. Haji Mohammadi, M., Nazari Samani, A., Zare Garizi, A., Keshtkar, H., Arabkhedri, M. & Sadoddin, A. (2022). Defining spatially continuous Hydrological Response Units for hydrological modelling in a mountainous watershed with SWAT (case study: Taleghan watershed). Journal of Range and Watershed Managment, 75(2), 213-226. doi: 10.22059/jrwm.2022.346096.1672. (In persion)
24. Hernandes, T. A. D., Scarpare, F. V. & Seabra, J. E. A. (2018). Assessment of impacts on basin stream flow derived from medium-term sugarcane expansion scenarios in Brazil. Agriculture, ecosystems & environment, 259, 11-18. [
DOI:10.1016/j.agee.2018.02.026]
25. Lucas-Borja, M. E., Carrà, B. G., Nunes, J. P., Bernard-Jannin, L., Zema, D. A. & Zimbone, S. M. (2020). Impacts of land-use and climate changes on surface runoff in a tropical forest watershed (Brazil). Hydrological Sciences Journal, 65(11), 1956-1973. [
DOI:10.1080/02626667.2020.1787417]
26. Mohseni, B., Mahdavi, M. J. & Ghorbani fard, M. (2023). Assessing the Evaluation of Global and Regional Soil Maps in Flow Forecasting using SWAT Model, Talar Watershed, Mazandaran Province. Geographical Planning of Space Quarterly Journal, 13(2), 2023. http://doi.org/10.30488/GPS.2023. 379075.3608
27. Mengistu, D. T. & Sorteberg, A. (2012). Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrology and Earth System Sciences, 16(2), 391-407. [
DOI:10.5194/hess-16-391-2012]
28. Munoth, P. & Goyal, R. (2020). Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub- Basin, India. International Journal of River Basin Management, 18(2), 177-189. [
DOI:10.1080/15715124.2019.1613413]
29. Nazaripooya H, Kardavani, P. & Farajirad A. (2015). Calibration and Evaluation of Hydrological Models, IHACRES and SWAT Models in Runoff Simulation. Journal of Spatial Analysis Environmental Hazards, 2 (2), 99-112. (In persion) [
DOI:10.18869/acadpub.jsaeh.2.2.99]
30. Ndulue, E. L., Mbajiorgu, C. C., Ugwu, S. N., Ogwo, V. & Ogbu, K. N. (2015). Assessment of land use/cover impacts on runoff and sediment yield using hydrologic models: A review. Journal of Ecology and the Natural Environment, 7(2):46-55. [
DOI:10.5897/JENE2014.0482]
31. Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., ... & Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199- 208. [
DOI:10.1016/j.jag.2014.09.005]
32. Prusty, R.M., Das, A. & Patra, K.C. (2021). Impact of Land Use and Land Cover Change on Streamflow of Upper Baitarani River Basin Using SWAT. In: Pandey, A., Mishra, S., Kansal, M., Singh, R., Singh, V. (eds) Water Management and Water Governance. Water Science and Technology Library, 96, [
DOI:10.1007/978-3-030-58051-3_16]
33. Ren D., Engel, B. & Mercado, J.A.V. (2022). Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the US Corn Belt. Water Res, 210:117976. https:// doi. org/ 10. 1016/j. watres. 2021. 117976 [
DOI:10.1016/j.watres.2021.117976]
34. Saboktakin, M., Montaseri, H., Eslamian, S. & khalili, R. (2022). Evaluation of the performance of SWAT model in simulating the inflow to the dam reservoir to deal with climate change (Case study: the catchment area upstream of the ZayandehRoud Dam). Climate Change Research, 3(10), 83-104. doi: 10.30488/ccr.2022.354749.1085. (In persion)
35. Saraie, B., Talebi, A., Mazidi, A. & Parvizi, S. (2020). Prioritization of Sardab-Rood watershed from flooding viewpoint using the SWAT model. Journal of Natural Environmental Hazards, 9(23), 85-98. doi: 10.22111/jneh.2019.29033.1500. (In persion)
36. Soltani, N. & Mohammadnejad, V. (2021). Efficiency of Google Earth Engine (GEE) system in land use change assessment and predicting it using CA-Markov model (Case study of Urmia plain). Journal of RS and GIS for Natural Resources, 12 (3),101-114. (In persion)
37. Wang, R., Kalin, L., Kuang, W. & Tian, H. (2014). Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrological Processes, 28(22), 5530-5546. [
DOI:10.1002/hyp.10057]
38. Wang RuoYu, W. R., Yuan YongPing, Y. Y., Yen, H., Grieneisen, M., Arnold, J., Wang Dan, W. D., ... & Zhang MingHua, Z. M. (2019). A review of pesticide fate and transport simulation at watershed level using SWAT: current status and research concerns. Science of The Total Environment, 669, 512-526. [
DOI:10.1016/j.scitotenv.2019.03.141]
39. Yin, J., He, F., Xiong, Y. J. & Qiu, G. Y. (2017). Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrology and Earth System Sciences, 21(1), 183- 196. [
DOI:10.5194/hess-21-183-2017]