1. Amezketa, E. (1999). Soil aggregate stability. A Review Journal of Sustainable Agriculture, 14(2-3), 83-151. [
DOI:10.1300/J064v14n02_08]
2. Arrouays, D., McKenzie, N., Hempel, J., Richer de Forges, A.C. & McBratney, A.B.) 2014(. GlobalSoilMap: Basis of the Global Spatial Soil Information System. CRC Press, London. [
DOI:10.1201/b16500]
3. Arshad, M., Li, N., Di. Bella, L. & Triantafilis, J. (2020). Field-scale digital soil mapping of clay: Combining different proximal sensed data and comparing various statistical models. Soil Science Society of America Journal, 84(2), 314-330. [
DOI:10.1002/saj2.20008]
4. Banaei, M.H. (1998). Soil Moisture and Temperature Regime Map of Iran. Soil and Water Research Institute, Ministry of Agriculture, Iran. (in persian)
5. Barzgar, A.A. (2004). Soil physics principle. Second publication, Shahid Chmaran University publication.
6. Bouslihim, Y., Rochdi, A., Aboutayeb, R., El Amrani-Paaza, N., Miftah, A. & Hssaini, L. (2021). Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique. Environmental Informatics and Remote Sensing, 9. [
DOI:10.3389/feart.2021.748859]
7. Bronick, C.J. & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22. [
DOI:10.1016/j.geoderma.2004.03.005]
8. Carré, F., McBratney, A.B., Mayr, T. & Montanarella, L. (2007). Digital soil assessments: [
DOI:10.1016/j.geoderma.2007.08.015]
9. Beyond DSM. Geoderma, 142, 69-79. [
DOI:10.1016/j.geoderma.2007.08.015]
10. Chen, T., Niu, R.Q., Li, P.X., Zhang, L.P. & Du, B. (2011). Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun watershed, North China. Environmental Earth Sciences, 63(3), 533-541. http://dx.doi.org/10.1007/s12665-010-0715-z [
DOI:10.1007/s12665-010-0715-z]
11. Darvishzadeh, A. (1991). Geology of Iran. Amir Kabir, Tehran. (in persian)
12. GSI. (2006). Geological map of Iran 1:100000, Sheet 5263. Geological Survey and Mineral Explorations of Iran, Ministry of Industry, Mine and Trade.
13. Herrick, J.E., Whitford, W.G., De Soyza, A., Van Zee, J.W., Havstad, K.M., Seybold, C. & Walton, M. (2001). Field soil aggregate stability kit for quality and rangeland health evaluations. Catena, 44(1), 27-35. http://dx.doi.org/10.1016/S0341-8162(00)00173-9 [
DOI:10.1016/S0341-8162(00)00173-9]
14. IRIMO, (2020). Islamic Republic of Iran Meteorological Organization. Tehran, Iran.
15. Kamamia, A.W., Vogel, C., Mwangi, H.M., Feger, K.H., Sang, J. & Julich, S. (2021). Mapping soil aggregate stability using digital soil mapping: A case study of Ruiru reservoir catchment, Kenya. Geoderma Regional, 24, e00355. [
DOI:10.1016/j.geodrs.2020.e00355]
16. Kemper, W.D. & Rosenau, R.C. (1986). Aggregate Stability and Size Distribution. In: Klute, A., (ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods, 2nd Edition, Soil Science Society of America Agronomy Monograph No. 9, 425-442. [
DOI:10.2136/sssabookser5.1.2ed.c17]
17. Khanifar, J., Khademalrasoul, A. & Amerikhah, H. (2020). Modelling of soil aggregate stability as an index of soil erodibility using geomorphometric parameters. Agricultural Engineering, 43(1), 49-64. [
DOI:10.22055/agen.2020.28561.1482]
18. Khosravani, P., Moosavi, A.A., Baghernejad, M., Kebonye, N., Mousavi, S.R. & Scholten, T. (2024). Machine learning enhances soil aggregate stability mapping for effective land management in a semi-arid region. Remote Sensing, 16(22). [
DOI:10.3390/rs16224304]
19. Le Bissonnais, Y. (1996). Soil Characteristics and Aggregate Stability. In: Agassi, M., (ed.). Soil Erosion, Conservation, and Rehabilitation, 1nd Edition, CRC Press, 41-60. [
DOI:10.1201/9781003418177-3]
20. Li, M., Han, X., Du, S. & Li, L.J. (2019). Profile stock of soil organic carbon and distribution in croplands of Northeast China. Catena, 174, 285-292. [
DOI:10.1016/j.catena.2018.11.027]
21. Li, H., Chang, L., Wei, Y. & Li, Y. (2023). Interacting effects of land use type, soil attributes, and environmental factors on aggregate stability. Land, 12, 1286. [
DOI:10.3390/land12071286]
22. Minasny, B. & McBratney, A.B. (2016). Digital soil mapping: a brief history and some lessons. Geoderma, 264, 301-311. http://dx.doi.org/10.1016/j.geoderma.2015.07.017 [
DOI:10.1016/j.geoderma.2015.07.017]
23. Monavvar Sabegh, S., Zare Haghi, D., Samadianfard, S. & Rezaei, H. (2024). Wet aggregate stability modeling based on random forest optimized with genetic
24. algorithm. Iranian Journal of Soil and Water Research, 55(7), 1095-1111. (in persian) [
DOI:10.22059/ijswr.2024.376443.669712]
25. Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1), 46. [
DOI:10.1186/s12874-019-0666-3]
26. Prout, J.M., Shepherd, K.D., McGrath, S.P., Kirk, G.J.D. & Haefele, S.M. (2021). What is a good level of soil organic matter? An index based on organic carbon to clay ratio. European Journal of Soil Science, 72(6), 2493-2503. [
DOI:10.1111/ejss.13012]
27. Rahbar Alam Shirazi, F., Shahbazi, F., Rezaei, H. & Biswas, A. (2023). Digital assessments of soil organic carbon storage using digital maps provided by static and dynamic environmental covariates. Soil Use and Management, 39(2), 948-974. [
DOI:10.1111/sum.12900]
28. Rahbar Alam Shirazi, F., Shahbazi, F., Rezaei, H. & Biswas, A. (2024). Multi-property digital soil mapping at 30-m spatial resolution down to 1 m using extreme gradient boosting tree model and environmental covariates. Remote Sensing Applications: Society and Environment, 33, 101123. [
DOI:10.1016/j.rsase.2023.101123]
29. Shabani, A., Gholamalizadeh, A. & Golshahi, S. (2017). Predicting aggregate stability using soil properties in different land use. Journal of Agricultural Engineering, 39(2), 117-131. [
DOI:10.22055/agen.2017.12608]
30. Shahbazi, F., Hughes, P., McBratney, A.B., Minasny, B. & Malone, B.P. (2019). Evaluating the spatial and vertical distribution of agriculturally important nutrients-nitrogen, phosphorous and boron-in North West Iran. Catena, 173, 71-82. [
DOI:10.1016/j.catena.2018.10.005]
31. SheidaiKarkaj, E., Rezaei, H., Niknahad gharmakher, H., Jafari Footami, I. & Sharifian, A. (2019). The role of exclosure in changing aggregate stability and soil structure of rangelands
32. in Golestan province. Iranian Journal of Range and Desert Research, 26(4), 904-917. (in persian) [
DOI:10.22092/ijrdr.2019.120682]
33. Soinne, H., Keskinen, R., Tähtikarhu, M., Kuva, J. & Hyväluoma, J. (2023). Effects of organic carbon and clay contents on structure-related properties of arable soils with high clay content. European Journal of Soil Science, 74(5), e13424. [
DOI:10.1111/ejss.13424]
34. Teimuri Bardyani, S. & Sarmadian, F. (2024). Digital mapping of soil properties (Calcium Carbonate and soil clay percentage) using landsat 8 and Prisma satellite images by the random forest algorithm. Iranian Journal of Soil and Water Research, 55 (3), 381-399. (in persian) [
DOI:10.22059/ijswr.2024.363941.669558]
35. Velázquez, F.J.B., Shahabi, M., Rezaei, H., González-Peñaloza, F., Shahbazi, F. & Anaya-Romero, M. (2022). The possibility of spatial mapping of soil organic carbon content at three depths using easy-to-obtain ancillary data in a Mediterranean area. Open Research Europe, 2(110), 110. [
DOI:10.12688/openreseurope.14716.1]
36. Wang, S., Liu, Z., Obalum, S.E., Liang, C., Han, K. & Han, H. (2023). Effects of subsoiling depth on soil aggregate stability and carbon storage in a clay-loam soil. Journal of Soil Science and Plant Nutrition, 23, 3302-3312. [
DOI:10.1007/s42729-023-01246-y]
37. Yang, C., Yang, L., Zhang, L. & Zhou, C. (2023). Soil organic matter mapping using INLA-SPDE with remote sensing based soil moisture indices and Fourier transforms decomposed variables. Geoderma, 437. [
DOI:10.1016/j.geoderma.2023.116571]
38. Ziadat, F.M. (2007). Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma, 140(1-2), 73-80. [
DOI:10.1016/j.geoderma.2007.03.004]
39. Zhang, Z., Wei, C., Xie D., Gao, M. & Zeng, X. (2008). Effects of land use patterns on soil aggregate stability in Sichuan Basin, China. Particuology, 6(3), 157-166. [
DOI:10.1016/j.partic.2008.03.001]