زودآیند (زمستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه جغرافیای طبیعی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران. ، ahmadabadi@khu.ac.ir
چکیده:   (574 مشاهده)
پدیده فرسایش بادی و گردوغبار از چالش‌های اساسی مناطق خشک و نیمه‌خشک است که پیامدهای زیست‌محیطی و اقتصادی گسترده‌ای به همراه دارد. این پژوهش با هدف بررسی رابطه میان فرسایش بادی و تولید گردوغبار در شهرستان‌های آرادان و گرمسار انجام شده است. شناسایی مناطق فرسایشی با استفاده از تصاویر ماهواره‌ای Sentinel-2A انجام شد و برای شناسایی و پهنه بندی گردوغبار از داده‌های مشاهداتی  ایستگاه‌های همدیدی، تصاویر ماهواره‌ای، عمق نوری هواویزها و میزان تیرگی جو ناشی از گردوغبار استفاده شده است. در این پژوهش، شاخص‌های سنجش از دوری (نسبت تفاضلی پوشش گیاهی و رطوبت خاک) نیز به‌کار گرفته شدند. نتایج این پژوهش نشان می‌دهد که دید افقی در محدوده  مطالعاتی به پنج طبقه از "بسیار کم" تا "بسیار زیاد" تقسیم می‌شود و روندشمال به جنوب دارد. به‌گونه‌ای که در بخش شمالی محدوده، که شامل مراکز شهرستان‌ها، روستاها و جاده مشهد-تهران می‌شود، دید افقی بسیار کم است. کاهش دید افقی در بسیاری از نواحی این دو شهرستان عمدتاً به دلیل افزایش گرد و غبار در این مناطق رخ می‌دهد. این موضوع به‌طور مستقیم با شدت فرسایش بادی در مناطق جنوبی و مرکزی شهرستان‌ها مرتبط است. همچنین نتایج پهنه‌های فرسایش بادی نشان داد پهنه برداشت 11 درصد، رسوبگذاری 1 درصد و پهنه حمل 2/0 درصد از مساحت دو شهرستان آرادان و گرمسار را در برگرفته است. تحلیل تصاویر ماهواره‌ای، تغییرات قابل توجه در توزیع پوشش گیاهی، رطوبت خاک و فعالیت‌های انسانی را تأیید می‌کند که از عوامل اصلی تشدید فرسایش بادی و کاهش دید افقی محسوب می‌شوند. پژوهش حاضر به اهمیت بکارگیری فناوری‌های نوین از جمله سنجش از دور برای مدیریت بهینه منابع طبیعی تاکید دارد. بنابراین، پیشنهاد می‌شود نتایج این پژوهش به‌عنوان مبنایی علمی برای تدوین برنامه‌های اجرایی مدیریت فرسایش بادی در سطوح محلی و استانی به‌ویژه در قالب طرح‌های مدیریتی در مناطق بیابانی و حاشیه شهری به‌کار گرفته شود.
 
متن کامل [PDF 1584 kb]   (17 دریافت)    

فهرست منابع
1. Abbasi, H. Gohardoust, A. khaksarian, F. & Baranizadeh, M. (2022). Identification of land sensitivity to wind erosion using field data in Hamoun-e Baringak, Sistan. Natural Environmental Hazards, 11 (33), 121-134. doi: 10.22111/jneh.2022.37186.1750. (in persian)
2. Ahmadabadi, A. Emadoddin, F. & Kiani, S. (2024). Vulnerability Analysis due to Dust Phenomenon in Kerman Province. Geography and Environmental Sustainability, 14 (1), 119-101. [DOI:10.22126/ges.2024.9855.2707. (in persian)]
3. Ara, H. kianiyan, M K. Sohrabi, H. & Ahmadabadi, A. (2020). Studying Effectiveness of Landsat ETM+ Satellite Images Classification Methods in Identification of desert pavements (Case study: South of Semnan). Environmental Erosion Research, 10 (20), 20-1. http://magazine.hormozgan.ac.ir/article-1-531-fa.html. (in persian)
4. Boroughani, M. Mirchooli, F. & Mohammadi, M. (2022). Dust source mapping using satellite imagery and machine learning models. Arid Regions Geographic Studies, 13 (47), 13-1. (in persian)
5. Borrelli, P. Panagos, P. & Montanarella, L. (2015). New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustainability, 7 (7), 8836-8823. [DOI:10.3390/su7078823]
6. Chavez, P S. Mackinnon, D J. Reynolds, R L. & Velasco, M G. (2002). Monitoringg dust storms and mapping landscape vulnerability to wind erosion using satellite and ground-based digital images. ARID LANDS, 51.
7. Chepil, W.S. & Woodruff, N.P. (1963). The Physics of Wind Erosion and its Control. Advances in Agronomy, 15, 302-211. [DOI:10.1016/S0065-2113(08)60400-9]
8. Chu, D. A. Kaufman, Y. J. Ichoku, C. Remer, L. A. Tanré, D. & Holben, B. N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29 (12). [DOI:10.1029/2001GL013205]
9. Duniway, M. C. Pfennigwerth, A. A. Fick, S. E. Nauman, T. W. Belnap, J. & Barger, N. N. (2019). Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere, 10 (3). [DOI:10.1002/ecs2.2650]
10. Dwivedi, R.S. (2018). Geospatial Technologies for Land Degradation Assessment and Management. 1st ed.; CRC Press: Boca Raton, FL, USA [DOI:10.1201/9781315152325]
11. Funk, R. (2015). Assessment and measurement of Wind Erosion. In Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water Book Series; Springer: Cham, Switzerland, 449-425. [DOI:10.1007/978-3-319-24409-9_18]
12. Gillette, D. A. Fryrear, D. Gill, T. E. Ley, T. Cahill, T. A. & Gearhart, E. A. (1997). Relation of vertical flux of particles smaller than 10 lm to total aeolian horizontal mass flux at Owens Lake. Geo-physical Research: Atmospheres, 102 (22), 26015-26009. 10.1029/97JD02252 [DOI:10.1029/97JD02252]
13. Goudie, A. S. & Middleton, N. J. (2006). Saharan Dust Storms: Nature and Consequences. Earth-Science Reviews, 56 (1-4), 204-179. [DOI:10.1016/S0012-8252(01)00067-8]
14. Gupta, P. Christopher, A. Wang, J. & Gehrig, R. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40, 5892-5880. [DOI:10.1016/j.atmosenv.2006.03.016]
15. Gupta, P. & Christopher, S.A. (2008). Seven year particulate matter air quality assessment from surface and satellite measurements. Atmospheric Chemistry and Physics, 8(1), 3324-3311. [DOI:10.5194/acp-8-3311-2008]
16. Hodel, Elias. (2012). Analysing Land Cover Change in Mongolia Using Terra MODIS Satellite Data supervisor Hans Hurni, Masterarbeit der Philosophisch, Universität Bern.
17. Houser, C. A. & Nickling, W. G. (2001). The emission and vertical flux of particulate matter < 10 lm from a disturbed clay-crusted surface. Sedimentology, 48, 267-255. [DOI:10.1046/j.1365-3091.2001.00359.x]
18. Iran Meteorological Organization. (2024). Annual Weather Report of Garmsar County. (in persian)
19. Jarrah, M. Mayel, S. Tatarko, J. Funk, R. & Kuka, K. (2020). A review of wind erosion models: Data requirements, processes, and validity. CATENA, 187, 388-104. https://doi.org/10.1016/j.catena.2019.104388 [DOI:10.1016/j.catena.2019.104388.]
20. Jahantigh, M. Jahantigh, M. & Iranmanesh, F. (2023). Identification of Storms and Centers of Dust Production in Southeast of Iran (Case Study: Sistan Region). Environmental Erosion Research, 13(3), 92-67. http://magazine.hormozgan.ac.ir/article-1-772-fa.html
21. Kokhanovsky, A. A. (2008). Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere. Springer. DOI:10.1007/978-3-540-49909-1 [DOI:10.1007/978-3-540-49909-1]
22. Kumar, N. Chu, A. & Foster, A. (2013). An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment, 41 (21), 4503-4492. [DOI:10.1016/j.atmosenv.2007.01.046]
23. Liu, Y. Zhao, H. Zhao, G. Cao, X. Zhang, X. & Xiu, A. (2023). Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021. Agriculture, 13(4). [DOI:10.3390/agriculture13040781]
24. Liu, Y. Franklin, M. Kahn, R. & Koutrakis, P. (2007). Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sensing of Environment, 107 (1-2), 44-33. [DOI:10.1016/j.rse.2006.05.022]
25. Lyles, L. (1983). Erosive wind energy distributions and climatic factors for the West. Soil and Water Conservation, 38, 109-106. [DOI:10.1080/00224561.1983.12436259]
26. Maghsoudi, M. Ghojehzadeh halani, A. allahveisi, A. & barati, Z. (2024). Studying the morphology and spatial changes of Azerbaijan Ergs using satellite images and analysis of erosive winds( case study: Qomtape and Maghsudlu Ergs). Arid Regions Geographic Studies, 15(57), 22-1. doi: 10.22034/jargs.2024.403993.1044. (in persian)
27. McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Remote Sensing, 17(7), 1432-1425. https://doi.org/10.1080/01431169608948714 [DOI:10.1080/01431169608948714.]
28. McTainsh, G.H. Chan, Y.C. McGowan, H.A. Leys, J.F. & Tews, E.K. (2005). The 23rd October, 2002 dust storm in eastern Australia: characteristics and meteorological conditions. Atmospheric Environment, 39(7), 1236-1227. DOI: [DOI:10.1016/j.atmosenv.2004.10.016]
29. Namdar Khojasteh, D. & Moradi, E. (2021). The Application of USEPA Model for Identification of Dust Sources in the Delazan District, Semnan County. Watershed Management Research, 34(3), 181-165. doi: 10.22092/wmej.2021.352562.1371. (in persian)
30. Poorhashemi, S. Amir Ahmadi, A. Zangane, M. A. Salehi, M. (2019). Identification and Characterization of Dust Source in Khorasan Razavi Province. Geographical Research, 34 (1), 9-1. URL: http://georesearch.ir/article-1-381-en.html. (in persian) [DOI:10.29252/geores.34.1.1]
31. Ravi, S. D'Odorico, P. Breshears, D.D. Field, J.P. Goudie, A.S. Huxman, T.E. Li, J. Okin, G.S. Swap, R.J. Thomas, A.D. Pelt, S. V. Whicker, J.J. & Zobeck, T.M. (2011). Aeolian Processes and the Biosphere. Reviews of Geophysics, 49(3). 45-1. https://doi.org/ 10.1029/2010RG000328 [DOI:10.1029/2010RG000328]
32. Scheper, S. Weninger, T. Kitzler, B. Lackóová, L. Cornelis, W. Strauss, P. & Michel, K. (2021). Comparison of the Spatial Wind Erosion Patterns of Erosion Risk Mapping and Quantitative Modeling in Eastern Austria. Land, 10 (9), 974. https://doi.org/10.3390/land10090974 [DOI:10.3390/land10090974.]
33. Secretariat of the United Nations Convention to Combat Desertification (UNCCD). (1977). Desertification: its causes and consequences. Pergamon Press, New York.
34. Semnan Province Agricultural Jihad Organization. (2022). Agriculture and Livestock Report of Aradan and Garmsar Counties. (in persian)
35. Senanayake, S., Pradhan, B., Huete, A., & Brennan, J. (2020). A review on assessing and mapping soil erosion hazard using geo-informatics technology for farming system management. Remote Sensing, 12 (24), 4063. [DOI:10.3390/rs12244063]
36. Sepuru, T.K. & Dube, T. (2018). An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Environmental Science. 9, 9-1. DOI: 10.1016/j.rsase.2017.10.005 [DOI:10.1016/j.rsase.2017.10.005]
37. Shoshany, M. Goldshleger, N. & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: A Review. Remote Sensing, 34 (17), 6181-6152. DOI: 10.1080/01431161.2013.793872 [DOI:10.1080/01431161.2013.793872]
38. Stallings, J.H. (1951). Mechanics of Wind Erosion, Soil Conservation. Government Publishing Office: Washington, DC, USA.
39. Statistical Center of Iran. (2016). Results of the 2016 National Population and Housing Census. (in persian)
40. Sterk, G. Riksen, M. & Goossens, D. (2001). Dryland Degradation by wind erosion and its control. Annuals of Arid Zone, 41 (3), 367-351.
41. Tian, J. & Chen, D, (2010). A semi-empirical model for predicting hourly round-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sensing of Environment, 114 (2), 229-221. [DOI:10.1016/j.rse.2009.09.011]
42. The National Environmental Organization. (2019). National Report on the Source Identification of Internal Wind Erosion, Sandstorms, and Dust Storms in the Country. (in Persian)
43. UNEP. (2016). Global Assessment of Sand and Dust Storms. United Nations Environment Programme. https://wedocs.unep.org
44. Vali, A. & Roustaei, F. (2018). Investigation of the Wind Erosion Trend in Central Iran using Dust Storm Index in the Last Fifty Years. Water and Soil Science, 21 (4), 200-189. URL: http://jstnar.iut.ac.ir/article-1-3326-fa.html. (in persian) [DOI:10.29252/jstnar.21.4.189]
45. Wang, D. Wan, B. Qiu, P. Su, Y. Guo, Q. Wang, R. Sun, F. & Wu, X. (2018). Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sensing, 10(9), 1468. https://doi.org/10.3390/rs10091468 [DOI:10.3390/rs10091468.]
46. World Meteorological Organization (WMO). (2019). Manual on codes. 1 (306).
47. Zahrabi, S. Khosravi, H. Mesbahzadeh, T. Jafari, M. & Dastorani, M. (2020). Investigating wind erosion threshold velocity and the effect of soil characteristics in dust production centers in Alborz province. Arid Regions Geographic Studies, 10 (38), 13-1. SID. https://sid.ir/paper/381956/en. (in persian)
48. Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 113-101. [DOI:10.1016/j.envint.2013.10.011]
49. Ginoux, P. Prospero, J. M. Gill, T. E. Hsu, N. C. & Zhao, M. (2012). Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50 (3). [DOI:10.1029/2012RG000388]
50. Sow, M. Alfaro, S. C. Rajot, J. L. & Marticorena, B. (2020). Dust emissions from West African drylands: An analysis of changes between 2006 and 2015. Atmospheric Environment, 220, 117057. [DOI:10.1016/j.atmosenv.2019.117057]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb