1. Ackerman, S.A. (1997). Remote sensing aerosols using satellite infrared observations. Journal of Geophysical Research, 102, 17069-17080. [
DOI:10.1029/96JD03066]
2. Adnan, R.M., Liang, Z., & Heddam, S. (2019). Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology, (586), 124371.
https://doi.org/10.1016/j.jhydrol.2019.124371 [
DOI:10.1016/J.JHYDROL.2019.124371.]
3. Akbari, M., Bashiri, M., & Rangavar, A.S. (2018). Application of data mining algorithms in sensitivity analysis and zoning of susceptible areas to gully erosion in Khorasan Razavi province basins. Journal of Environmental Erosion Research, 7(26), 16-42.
4. Bai, S.B., Wang, J., Lu, G.N., Zhou, P.G., Hou, S.S., & Xu, S.N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China, Geomorphology, 115: 23-31. [
DOI:10.1016/j.geomorph.2009.09.025]
5. Boroughani, M., Hashemi, H., Hosseini, S. H., Pourhashemi, S., & Berndtsson, R. (2019). Desiccating Lake Urmia: a new dust source of regional importance. IEEE Geoscience and Remote Sensing Letters, 17(9), 1483-1487. 10.1109/LGRS.2019.2949132 [
DOI:10.1109/LGRS.2019.2949132]
6. Boroughani, M., Mirchooli, F., Hadavifar, M., & Fiedler, S. (2023). Mapping land degradation risk due to land susceptibility to dust emission and water erosion. Soil, 9(2), 411-423. [
DOI:10.5194/soil-9-411-2023]
7. Boroughani, M., Pourhashemi, S., Gholami, H., & Kaskaoutis, D. G. (2021). Predicting of dust storm source by combining remote sensing, statistic-based predictive models and game theory in the Sistan watershed, southwestern Asia. Journal of Arid Land, 13(11), 1103-1121. [
DOI:10.1007/s40333-022-0008-x]
8. Boroughani, M., Pourhashemi, S., Hashemi, H., Salehi, M., Amirahmadi, A., Asadi, M. A. Z., & Berndtsson, R. (2020). Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecological Informatics, 56, 101059. [
DOI:10.1016/j.ecoinf.2020.101059]
9. Boroughani, M., Pourhashemi, S., & Zarei, M. (2019). Identification of dust harvesting areas and determination of its characteristics in eastern Iran. Scientific Research Journal of Desert Ecosystem Engineering, 25(4): 39-52.
10. Broumand., P., & Bakhtiarpour., A. (2016). Finding the origin of dust particles by examining their physical and chemical properties and numerical modeling in Masjid Sulaiman city. Journal of Health and Environment. Scientific Research Quarterly of Iranian Health Science Association, 9(4), 517-526.
11. Bullard J.E. (2010). Bridging the gap between field data and global models: current strategies in aeolian research. Earth Surface Process Landforms, 35: 496-499. [
DOI:10.1002/esp.1958]
13. Can, T., Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H., & Duman, T.Y. (2005). Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology, 72: 250-271. [
DOI:10.1016/j.geomorph.2005.05.011]
14. Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013), Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Natural Hazard Earth System Science, 13: 2815-2831. [
DOI:10.5194/nhess-13-2815-2013]
15. Crouvi O., Schepanski K., Amit R., Gillespie A.R., & Enzel Y. (2012). Multiple dust sources in the Sahara Desert: the importance of sand dunes. Geophysical Research Letters, 39: L13401. http://dx.doi.org/10.1029/2012GL052145. [
DOI:10.1029/2012GL052145]
16. De Vries, G. J., Duetz, W., Buijs, R. M., van Heerikhuize, J., & Vreeburg, J. T. (1986). Effects of androgens and estrogens on the vasopressin and oxytocin innervation of the adult rat brain. Brain research, 399(2), 296-302. [
DOI:10.1016/0006-8993(86)91519-2]
17. Farshad, M., & Sadeh, J. (2014). Short-circuit fault location in high voltage direct current transmission lines using neural networks, generalized regression and Random Forest algorithm. Intelligent Systems in Electrical Engineering, 4(2): 1-14.
18. Feuerstein, S., & Schepanski, K. (2018). Identification of dust sources in a Saharan dust hot-spot and their implementation in a dust-emission model. Remote Sensing, 11(1), 4. [
DOI:10.3390/rs11010004]
19. Gholami, H., Mohamadifar, A., Rahimi, S., Kaskaoutis, D. G., & Collins, A. L. (2021). Predicting land susceptibility to atmospheric dust emissions in central Iran by combining integrated data mining and a regional climate model. Atmospheric Pollution Research, 12(4), 172-187. [
DOI:10.1016/j.apr.2021.03.005]
20. Gholami, H., Mohamadifar, A., Sorooshian, A., & Jansen, J. D. (2020). Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric Pollution Research, 11(8), 1303-1315. [
DOI:10.1016/j.apr.2020.05.009]
21. Gholami, P., Dinpazhoh, L., Khataee, A., & Orooji, Y. (2019). Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrasonics sonochemistry, 55, 44-56. [
DOI:10.1016/j.ultsonch.2019.03.001]
22. Hong, H., Naghibi, S.A., Pourghasemi, H.R., & Pradhan, B. (2016). GIS-based landslide spatial modeling in Ganzhou City, China. Arabian Journal of Geoscience, 9, 112. http://dx.doi.org/ 10.1007/s12517-015-2094-y. [
DOI:10.1007/s12517-015-2094-y]
23. Jewell P.W., & Nicoll K. (2011). Wind regimes and aeolian transport in the Great Basin, U.S.A. Geomorphology, 129: 1-13. [
DOI:10.1016/j.geomorph.2011.01.005]
24. Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B. & Guiver, M. D. (2021). Designing the next generation of proton-exchange membrane fuel cells. Nature, 595(7867), 361-369. [
DOI:10.1038/s41586-021-03482-7]
25. Karimi, Kh., Taheri Shahraiyni, H., Habibi Nokhandan, M., & Hafezi Moghaddas, N. (2011). Identification of the point sources of dust storms in the Middle East using remote sensing. Journal of Climate Research, 2(7): 122-132.
26. Khosravi, M., Ismailnejad, M., & Nazaripour, H. (2010). Climate change and its impact on water resources in the Middle East. The fourth international congress of geographers of the Islamic world.
27. Lazarus, E.D., & Constantine, J.A. (2013). Generic theory for channel sinuosity.Proc Natl Acad Sci U S A, 110:8447-8452. [
DOI:10.1073/pnas.1214074110]
28. Lee J., Baddock M., Mbuh M., & Gill T. (2012). Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Research, 3(4): 459-466. [
DOI:10.1016/j.aeolia.2011.08.001]
29. Lee, J., Gill, T., Mulligan, K., Acosta, M.D., & Perez, A. (2009). Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America. Geomorphology, 105(2), 18-27. [
DOI:10.1016/j.geomorph.2007.12.016]
30. Lee, J., Shi, Y. R., Cai, C., Ciren, P., Wang, J., Gangopadhyay, A., & Zhang, Z. (2021). Machine learning based algorithms for global dust aerosol detection from satellite images: inter-comparisons and evaluation. Remote Sensing, 13(3), 456. [
DOI:10.3390/rs13030456]
31. Mei, D., Xiushan, L., Lin, S., & Ping, W. A. N. G. (2008). A dust-storm process dynamic monitoring with multi-temporal MODIS data. Remote Sensing and Spatial Information Sciences, 37, 965-970
32. Middleton, N. (2019). Variability and trends in dust storm frequency on decadal timescales: Climatic drivers and human impacts. Geosciences, 9(6), p.261. [
DOI:10.3390/geosciences9060261]
33. Miller M.E., Bowker M.A., Reynolds R.L., & Goldstein H.L. (2012). Post-fire land treatments and wind erosion lessons from the Milford Flat Fire, UT, USA. Aeolian Research, 7(4): 29-44. [
DOI:10.1016/j.aeolia.2012.04.001]
34. Miller, D. (2003). An asymmetry‐based view of advantage: towards an attainable sustainability. Strategic management journal, 24(10), 961-976. [
DOI:10.1002/smj.316]
36. Miller, R. L., Knippertz, P., Pérez García-Pando, C., Perlwitz, J. P., & Tegen, I. (2014). Impact of dust radiative forcing upon climate. Mineral dust: A key player in the Earth system, 327-357. [
DOI:10.1007/978-94-017-8978-3_13]
37. Mirchooli, F., Gholami, A., Boroughani, M. (2023). Flood susceptibility zoning in Famnat watershed, Gilan province. Journal of Water and Soil, 37(6), 841-853 10.22067/JSW.2023.84146.1328.
38. Nicodemus KK. 2011. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Briefings in Bioinformatics, 12: 369-373. [
DOI:10.1093/bib/bbr016]
39. Pourghasemi H.R., & Kerle N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental earth sciences, 75(3): 185. Link: https:// doi: 10.1007/s12665-015-4950-1 [
DOI:10.1007/s12665-015-4950-1]
40. Pourhashemi, S., Asadi, M. A. Z., Boroughani, M., & Azadi, H. (2023). Mapping of dust source susceptibility by remote sensing and machine learning techniques (case study: Iran-Iraq border). Environmental Science and Pollution Research, 30(10), 27965-27979. [
DOI:10.1007/s11356-022-23982-x]
41. Qu, J., Hao, X., Kafatos, M., & Wang, L. (2006). Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements. IEEE Geoscience and Remote Sensing Letters, 3(4), 484-486. 10.1109/LGRS.2006.877752 [
DOI:10.1109/LGRS.2006.877752]
42. Rahmati, O., Mohammadi, F., Ghiasi, S. S., Tiefenbacher, J., Moghaddam, D. D., Coulon, F., & Bui, D. T. (2020). Identifying sources of dust aerosol using a new framework based on remote sensing and modelling. Science of the Total Environment, 737, 139508. [
DOI:10.1016/j.scitotenv.2020.139508]
43. Soni, M. H., Shah, N., & Patil, H. A. (2018). Time-frequency masking-based speech enhancement using generative adversarial network. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5039-5043). IEEE. [
DOI:10.1109/ICASSP.2018.8462068]
44. Walker, A.L., Liu, M., Miller, S.D., Richardson, K.A., & Westphal, D.L. (2009). Development of a dust source database for mesoscale forecasting in Southwest Asia. Journal of Geophysical Research, 114(18), 1-24. [
DOI:10.1029/2008JD011541]
45. Yasrebi, B, Sufi, M, Mirnia, K, & Mohammadi, J. (2019). Morphometric relationships of water bodies in Ilam province. Watershed Engineering and Management, 12(1), 244-258.
46. Zobeck T., Baddock M., Pelt R., Tatarko J., and Acosts-Martinez V. 2013. Soil property effects on wind erosion of organic soils. Aeolian Research, 10: 43-51. [
DOI:10.1016/j.aeolia.2012.10.005]