زودآیند (زمستان)                   برگشت به فهرست مقالات | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه ژئومورفولوژی، دانشکده برنامه ریزی و علوم محیطی، دانشگاه تبریز و انجمن مخاطره‌شناسی ایران، تبریز، ایران ، rezmogh@tabrizu.ac.ir
چکیده:   (534 مشاهده)

سیلاب یکی از رایج‌ترین مخاطرات طبیعی جهان قلمداد می‌شود که سالانه موجب خسارات جانی و مالی فراوانی در سراسر جهان می‌گردد. حوضه آبریز سرند یکی از زیرحوضه‌های آبریز آجی‌چای است که در شمال شرقی شهر تبریز قرار دارد. این پژوهش با هدف ارزیابی و پهنه‌بندی مناطق مستعد وقوع سیلاب ناگهانی در حوضه آبریز سرندچای و با استفاده از نسخه به‌روزشده و بهینه‌شده شاخص MFFPI صورت گرفته است. برای تهیه لایه‌های شیب، تراکم جریان و انحنای دامنه، از مدل رقومی ارتفاعی با دقت مکانی ۱۰ متر سازمان نقشه‌برداری استفاده شد. همچنین، لایه نفوذپذیری، با استفاده از نقشه‌های سازمان زمین‌شناسی کشور و لایه‌های مربوط به کاربری اراضی و بافت خاک نیز بر اساس نقشه‌های موجود در سازمان منابع طبیعی و آبخیزداری استخراج گردید. وزن دهی براساس روشی که در نسخه نهایی مدل MFFPI مشخص گردیده است، صورت گرفت و سپس نقشه پتانسیل سیلاب ناگهانی تهیه گردید. برای بررسی روابط بین پارامترهای تاثیرگذار و نقشه پتانسیل سیلاب ناگهانی از آزمون همبستگی اسپیرمن و رگرسیون خطی چندمتغیره استفاده شد. بر اساس نتایج تحلیل‌های آماری، پارمترهای شیب، لیتوژی و بافت خاک در این حوضه بیشترین تأثیر را در ایجاد سیل داشتند، بنابراین با استفاده از این پارامترها نقشه نهایی پتانسیل سیلاب ناگهانی تهیه شد. با توجه به نقشه پهنه بندی به‌ترتیب 3/19، 5/16، 4/25، 3/24 و 3/14 درصد از مساحت حوضه سرندچای در پهنه‌های با خطر خیلی زیاد، زیاد، متوسط، کم و خیلی کم قرار دارد. مناطق با پتانسیل خطر خیلی کم و کم منطبق بر ارتفاعات حوضه هستند و به علت شیب زیاد، امکان نگهداری آب در آنجا وجود ندارد و مناطق با پتانسیل خطر خیلی زیاد و زیاد بیشتر منطبق بر بستر اصلی رودخانه سرند چای و دشت‌های رسوبی اطراف است. نتیجه بررسی میزان دقت و کارایی مدل MFFPI  نشان داد که این مدل به ترتیب با ضرایب 59/87 و 59/88 برای داده‌های آموزشی و اعتبارسنجی، عملکرد خوبی در تهیه نقشه حساسیت خطر وقوع سیل داشته است.
 

واژه‌های کلیدی: سیلاب، پهنه‌بندی، مدل MFFPI، سرندچای.
متن کامل [PDF 3398 kb]   (27 دریافت)    

فهرست منابع
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. 1. Abedini, M., & Beheshti Javid, E. (2016). Flood Risk Zoning in the Liqvan Chai Basin Using Network Analysis Process and Geographic Information System. Geographical Space Quarterly, 16(55), 293-312. (in persian)
2. Abedini, M., & Fathi Jokdan, R. (2016). Flood Risk Zoning in the Korganrud Basin Using ArcGIS. Hydrogeomorphology, 3(7), 1-17. (in persian)
3. Alizadeh, A. (2011). Principles of Applied Hydrology. Ferdowsi University of Mashhad Press. (in persian).
4. Azadi, Fahimeh, Sadouq, Seyed Hassan, Ghahrudi, Manijeh and Shahabi, Heiman. (2019). Zoning of flood risk sensitivity in the Kashkan River watershed using two WOE and EBF models. Geography and Environmental Hazards, 9(1), 45-60. doi: 10.22067/geo. v9i1.83090
5. Bayati Khatibi, Maryam and Karami, Fariba. (2019). Determining the contribution of sudden protrusions in the rate of gully erosion on sloping surfaces: a case study: Ojan Chay sub-basin. Quantitative Geomorphological Research, 8(2), 38-51.
6. Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability, 8(9), 948.‏ [DOI:10.3390/su8090948]
7. Ceru, J. (2012). Flash Flood Potential Index (FFPI) for Pennsylvania. Proceedings. In 2012 ESRI Federal GIS Conference.‏ [DOI:10.1515/geo-2018-0047]
8. Chadee, D. D., Sutherland, J. M., & Agard, J. B. (Eds.). (2014). Flooding and Climate Change: Sectorial Impacts and Adaptation Strategies for the Caribbean Region. Nova Publishers. ‏
9. Faramarzi, H., Hosseini, S. M., Pourghasemi, H. R., & Farnaghi, M. (2019). Evaluation and Zoning of Flood Risk in Golestan National Park. Ecohydrology Journal, 6(4), 1055-1068. (in persian) doi: 10.22059/ije.2019.285430.1163
10. Farhan, Y., Anaba, O., Salim, A., (2017). Morphometric Analysis and flash floods assessment for drainage basins of the Ras En Naqb Area, South Jordan using GIS, Applied Morphometry and Watershed Management Using RS, GIS and Multivariate Statistics (Case Studies), 413 p. [DOI:10.4236/gep.2016.46002]
11. Fathalizadeh, B., Abedini, M., & Rajabi, M. (2020). Investigating the causes and hazards of flood in Zunuzchay watershed using HEC-HMS hydrological model and fuzzy logic. Quantitative Geomorphological Research, 9(1), 134-155. (in persian).doi: 10.22034/gmpj.2020.109539
12. Fisher, P., Wood, J., & Cheng, T. (2004). Where is Helvellyn? Fuzziness of multi‐scale landscape morphometry. Transactions of the Institute of British Geographers, 29(1), 106-128. ‏ [DOI:10.1111/j.0020-2754.2004.00117.x]
13. Ghanavati, E., Karam, A., & Aghaalikhani, M. (2012). Evaluation and Zoning of Flood Risk in the Farahzad Basin (Tehran) Using the Fuzzy Model. Journal of Geography and Environmental Planning, 23(4), 121-138. (in persian)
14. Gomez, H., Kavzoglu, T., 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin. Venezuela. Eng. Geol. 78 (1-2), 11-27. [DOI:10.1016/j.enggeo.2004.10.004]
15. Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of earth system science, 120, 359-373. doi:10.1007/s12040-011-0082-5 [DOI:10.1007/s12040-011-0082-5]
16. Hejazi, A., Negahban, S., Mousavi, M., & Aminzadeh, M. (2024). Assessment and mapping of urban watershed flood by using fuzzy VIKOR and weighted linear combine models (Case study: Catchment Izeh-Khuzestan). Quantitative Geomorphological Research, 13(2), 51-70. (in persian) doi: 10.22034/gmpj.2024.452640.1499
17. Jahangir, M. H., Reineh, S. M. M., & Abolghasemi, M. (2019). Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather and Climate Extremes, 25, 100215.‏ doi:10.1016/j.wace.2019.100215 [DOI:10.1016/j.wace.2019.100215]
18. Jemai, S., Belkendil, A., Kallel, A., & Ayadi, I. (2024). Assessment of flood risk using Hierarchical Analysis Process method and Remote Sensing systems through arid catchment in southeastern Tunisia. Journal of Arid Environments, 222, 105150. [DOI:10.1016/j.jaridenv.2024.105150]
19. Kale, R.V., Jose, P.G., Taloor, A.K., Kumar, R., 2022. Assessment of digital elevation models based on the drainage morphometric parameters for the Tawi River Basin. In: Advanced Modelling and Innovations in Water Resources Engineering. Springer, Singapore, pp. 119-140. doi:10.1007/978-981-16-4629-4_10 [DOI:10.1007/978-981-16-4629-4_10]
20. Kruzdlo, R., & Ceru, J. (2010, June). Flash flood potential index for WFO Mount Holly/Philadelphia. In Eastern region flash flood conference, poster session, NOAA's National Weather Service (pp. 2-4). ‏
21. Mahmoudzadeh, H., Yari, F., & Vahedi, A. (2017). Application of Remote Sensing and GIS Techniques for Flood Risk Zoning in Urmia City Using a Multi-Criteria Analysis Approach. Physical Geography Research, 49(3), 719-730. (in persian) doi: 10.22059/jphgr.2018.210916.1006894
22. Mirchouli, Fahimeh, Gholami, Isa and Borughni, Mehdi. (1402). Zoning of flood susceptibility in the Famnat watershed, Gilan province. Water and Soil, 37(6), 841-853. doi: 10.22067/jsw.2023.84146.1328
23. Nosrati, A. (2000). Zoning of Flood Susceptibility in the Gaveh Rud Basin Using Remote Sensing and GIS. Applied Research in Geographical Sciences, 3-4, 49-58. (in persian)
24. Osei, B. K., Ahenkorah, I., Ewusi, A., & Fiadonu, E. B. (2021). Assessment of flood prone zones in the Tarkwa mining area of Ghana using a GIS-based approach. Environmental Challenges, 3, 100028. ‏ [DOI:10.1016/j.envc.2021.100028]
25. Parvin, M. (2019). Assessment and Zoning of Flash Flood Risks based on MFFPI Model (Case Study: Islamabad Basin). Environmental Management Hazards, 6(2), 169-184. (in persian) doi: 10.22059/jhsci.2019.283544.480
26. Pike, R. J. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in physical geography, 24(1), 1-20. ‏ [DOI:10.1191/030913300674449511]
27. Popa, M. C., Simion, A. G., Peptenatu, D., Dima, C., Draghici, C. C., Florescu, M. S., ... & Diaconu, D. C. (2020). Spatial assessment of flash‐flood vulnerability in the Moldova river catchment (N Romania) using the FFPI. Journal of Flood Risk Management, 13(4), e12624. ‏ [DOI:10.1111/jfr3.12624]
28. Rajabi, A. M., Rajaee, T., & Fallah Tafti, A. (2018). Flood zoning of Chalus basin using hydrologic model of HEC-RAS and Geographic Information System. Scientific Quarterly Journal of Iranian Association of Engineering Geology, 11(2), 45-60. (in persian)
29. Rezaei Moghaddam, M. H., & Behboudi, A. (2018). Flood Zoning in the Sarand Chai Basin Using GIS. National Conference on Natural Hazards in Iran: Prediction and Early Warning Methods, December 22, 2018. (in persian)
30. Rezaei Moghaddam, M. H., Mokhtari, D., & Shafiei Mehr, M. (2021). Flood hazard zoning in the Shahr Chai watershed of Mianeh using the VIKOR model. Hydrogeomorphology, 8(28), 19-37. (in persian) doi: 10.22034/hyd.2021.40169.1536
31. Rezaei Moghaddam, M. H., Rajabi, M., Rahimpour, T., & Farazian, A. (2025). Flooding Assessment of Qaleh Chai Basin Using MABAC Multi Criteria Decision Making Method. Environmental Management Hazards, 11(4), 323-337. (in Persian). doi: 10.22059/jhsci.2025.387824.861
32. Samela, C., Albano, R., Sole, A., & Manfreda, S. (2018). A GIS tool for cost-effective delineation of flood-prone areas. Computers, Environment and Urban Systems, 70, 43-52. ‏ [DOI:10.1016/j.compenvurbsys.2018.01.013]
33. Saraaf, I. P., Mohagheghzadeh, G., & Mohagheghzadeh, N. (2017). Flood Zoning of the Shapur Khast River Using Aerial Images. Geographical Space Quarterly, 17(57), 175-194. (in persian)
34. Shabanlou, S., Sedghi, H., Saghafian, B., & Mousavi, S. H. (2008). Flood zoning in Golestan's rivers network using GIS. Iranian Water Researches Journal, 2(2), 11-22. (in persian)
35. Smith, G. (2003). Flash flood potential: Determining the hydrologic response of FFMP basins to heavy rain by analyzing their physiographic characteristics. Salt Lake City: NWS Colorado Basin River Forecast Center. ‏
36. Taha, M. M., Elbarbary, S. M., Naguib, D. M., & El-Shamy, I. Z. (2017). Flash flood hazard zonation based on basin morphometry using remote sensing and GIS techniques: A case study of Wadi Qena basin, Eastern Desert, Egypt. Remote Sensing Applications: Society and Environment, 8, 157-167. ‏ [DOI:10.1016/j.rsase.2017.08.007]
37. Taloor, A. K., Sharma, S., Sharma, D., Chib, R., Jasrotia, R., Gupta, S., ... & Kale, R. V. (2024). Estimation of MFFPI for flood hazards assessment using geospatial technology in the Tawi Basin, India. Geosystems and Geoenvironment, 3(1), 100233. ‏ [DOI:10.1016/j.geogeo.2023.100233]
38. Tian, J., Xiao, T., & Zeng, S. (2025). Intelligent identification of flood risks and resilience planning in piedmont areas with nature-based solutions. Ecological Indicators, 172, 113274. ‏ [DOI:10.1016/j.ecolind.2025.113274]
39. Tincu, R., Lazar, G., & Lazar, I. (2018). Modified flash flood potential index in order to estimate areas with predisposition to water accumulation. Open Geosciences, 10(1), 593-606. ‏ [DOI:10.1515/geo-2018-0047]
40. Toda, L. L., Yokingco, J. C. E., Paringit, E. C., & Lasco, R. D. A LiDAR-based flood modeling approach for mapping rice cultivation areas in Apalit, Pampanga. Applied Geography, 2017; 80: 34-47. [DOI:10.1016/j.apgeog.2016.12.020]
41. Valizadeh, K. K., Delire, H. R., & Azari, A. K. (2019). Flood zoning and its impact on land use in the surrounding area using unmanned aerial vehicles (UAV) images and GIS. (in persian)
42. http://dorl.net/dor/20.1001.1.26767082.1398.10.3.4.5
43. Vasu, N. N., Lee, S. R., Pradhan, A. M. S., Kim, Y. T., Kang, S. H., & Lee, D. H. (2016). A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Engineering Geology, 215, 36-49. ‏ [DOI:10.1016/j.enggeo.2016.10.006]
44. Wang, L., Cui, Sh., Tang, J., Fang, L., Fang, X., Shewstha, S., Manandhar, B., Huang, J., Nitivattananon, V. (2023). Riverine Flood Risk Assessment with A Combined Model Chain in Southestern China, Ecological Indicators, 154, pp 1-11. [DOI:10.1016/j.ecolind.2023.110686]
45. Waleed, M., & Sajjad, M. (2025). High-resolution flood susceptibility mapping and exposure assessment in Pakistan: An integrated artificial intelligence, machine learning and geospatial framework. International Journal of Disaster Risk Reduction, 121(10544), 2. ‏ [DOI:10.1016/j.ijdrr.2025.105442]
46. Wood, J. (2023). Scale-based characterisation of digital elevation models. In Innovations in GIS (pp. 163-175). CRC Press. ‏ [DOI:10.1201/9781003417156-19]
47. Yao, J., Zhang, X., Luo, W., Liu, C., & Ren, L. (2022). Applications of Stacking/Blending ensemble learning approaches for evaluating flash flood susceptibility. International Journal of Applied Earth Observation and Geoinformation, 112, 102932 [DOI:10.1016/j.jag.2022.102932]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش‌های فرسایش محیطی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Environmental Erosion Research Journal

Designed & Developed by : Yektaweb